radix
简明释义
n. 根;[数]基数
n. (Radix)人名;(法、德、西)拉迪克斯;(英)雷迪克斯
复 数 r a d i c e s 或 r a d i x e s
英英释义
单词用法
黄芪(中草药) | |
黄芩 |
同义词
反义词
数字 | 数字'5'是十进制系统的一部分。 | ||
分数 | 在数学中,分数表示整体的一部分。 |
例句
1.Returns a string representation of the first argument in the radix specified by the second argument.
返回第一个参数的字符串形式,进制由第二个参数指定。
2.ObjectiveTo study the identification methods for Cortex Moutan and Radix Stephaniae Tetrandrae in Lixin Pill.
目的研究利心丸中的牡丹皮和防己的鉴别方法。
3.TLC was used for differentiating the radix astragali, notoginseng radix, ligustici, pieplant and so on in the prescription.
采用薄层色谱方法定性鉴别处方中黄芪、三七、川芎、大黄等药材。
4.Method :Platycodon grandiflorum, Aster tataricus L. f, Radix stemonae in were identified by TLC.
方法:采用薄层色谱法对制剂中桔梗、紫菀、百部分别进行定性鉴别。
5.Methods: Radix Rheum, Leech, Fructus Arctium in Huangzhi Oral Liquids was identified by TLC.
方法:采用薄层色谱法鉴别黄蛭口服液中的大黄、水蛭、牛蒡子。
6.Method: Comparing the contents of many kinds of anthraquinones in the crude drug, decoction and drug sediments of Radix et Rhizoma Rhei by HPLC.
方法:采用HPLC法对大黄煎煮前后生药、煎液及药渣中的各种蒽醌的含量进行监测。
7.Method: Comparing the contents of many kinds of anthraquinones in the crude drug, decoction and drug sediments of Radix et Rhizoma Rhei by HPLC.
方法:采用HPLC法对大黄煎煮前后生药、煎液及药渣中的各种蒽醌的含量进行监测。
8.In mathematics, the base of a number system is often referred to as its radix.
在数学中,数字系统的基数通常被称为它的基数。
9.The radix of the binary system is 2, which means it uses two symbols: 0 and 1.
二进制系统的基数是2,这意味着它使用两个符号:0和1。
10.When converting numbers from decimal to hexadecimal, it's important to know the radix of each system.
在将数字从十进制转换为十六进制时,了解每个系统的基数是很重要的。
11.In computer science, the radix sort algorithm is an efficient way to sort large sets of data.
在计算机科学中,基数排序算法是一种有效的排序大数据集的方法。
12.The radix for the octal number system is 8.
八进制数字系统的基数是8。
作文
In the realm of mathematics and computer science, the term radix refers to the base of a number system. It is a fundamental concept that helps us understand how numbers are represented and manipulated in various systems. For instance, in the decimal system, which is the most commonly used number system, the radix is 10. This means that it uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each position in a number represents a power of 10, which is crucial for performing arithmetic operations. On the other hand, in the binary system, which is extensively used in computer science, the radix is 2. This system only utilizes two digits: 0 and 1. Each position in a binary number represents a power of 2. Understanding the concept of radix is essential for programmers and engineers as it forms the basis for data representation in computers. When we write a binary number like 1011, we can interpret it as follows: 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0, which equals 11 in decimal. The significance of radix extends beyond mere number representation. It plays a crucial role in algorithms and data structures. For example, when sorting numbers, the choice of radix can affect the efficiency of certain sorting algorithms. Radix sort, a non-comparative integer sorting algorithm, takes advantage of the radix to sort numbers efficiently by processing individual digits. By grouping numbers based on their radix, this algorithm can achieve better performance compared to traditional comparison-based sorting methods. Moreover, the concept of radix is not limited to just numbers. It also finds applications in various fields such as cryptography, where different bases may be used to encode information securely. Understanding how to manipulate different radix systems can provide insights into creating more secure communication protocols. In conclusion, the term radix is integral to mathematics and computer science, serving as the foundation for understanding number systems and their applications. Whether we are dealing with binary, decimal, or any other base, recognizing the radix allows us to navigate through complex calculations and algorithms with ease. As technology continues to evolve, the importance of grasping the concept of radix will remain significant for future innovations and advancements in the digital age.
在数学和计算机科学的领域中,术语radix指的是数字系统的基数。这是一个基本概念,有助于我们理解各种系统中数字的表示和操作。例如,在十进制系统中,这是最常用的数字系统,radix是10。这意味着它使用十个数字:0、1、2、3、4、5、6、7、8和9。数字中的每个位置代表10的幂,这对于执行算术操作至关重要。 另一方面,在二进制系统中,这在计算机科学中广泛使用,radix是2。这个系统只利用两个数字:0和1。二进制数中的每个位置代表2的幂。理解radix的概念对程序员和工程师至关重要,因为它构成了计算机中数据表示的基础。当我们写一个二进制数如1011时,我们可以这样解释:1*2^3 + 0*2^2 + 1*2^1 + 1*2^0,这在十进制中等于11。 radix的重要性超越了单纯的数字表示。它在算法和数据结构中也发挥着至关重要的作用。例如,在对数字进行排序时,radix的选择可能会影响某些排序算法的效率。基数排序(Radix Sort)是一种非比较型整数排序算法,通过处理各个数字来有效地利用radix,通过根据其radix对数字进行分组,该算法可以实现比传统的基于比较的排序方法更好的性能。 此外,radix的概念不仅限于数字。它还在诸如密码学等各个领域中找到应用,其中可能使用不同的基数安全地编码信息。理解如何操作不同的radix系统可以为创建更安全的通信协议提供洞察。 总之,术语radix是数学和计算机科学的核心,作为理解数字系统及其应用的基础。无论我们是在处理二进制、十进制还是任何其他基数,认识到radix使我们能够轻松地应对复杂的计算和算法。随着技术的不断发展,掌握radix概念的重要性将继续对未来的创新和数字时代的进步产生重要影响。
文章标题:radix的意思是什么
文章链接:https://www.liuxue886.cn/danci/265757.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论