dopant
简明释义
n. 掺杂物;搀杂剂
英英释义
A substance that is added in small amounts to a material, especially a semiconductor, to alter its electrical properties. | 一种以少量添加到材料中的物质,特别是半导体,以改变其电气特性。 |
单词用法
n型掺杂剂 | |
p型掺杂剂 | |
掺杂剂浓度 | |
掺杂剂扩散 | |
引入掺杂剂 | |
选择掺杂剂 | |
表征掺杂剂 | |
控制掺杂剂水平 |
同义词
反义词
例句
1.Dopant tAn element that contributes an electron or a hole to the conduction process, thus altering the conductivity.
搀杂剂-可以为传导过程提供电子或空穴的元素,此元素可以改变传导特性。
2.Therefore the dopant concentration profile measured by this method is a better approximation for practical carrier profile in silicon epitaxial layers.
因此,用此法测量的外延层分布是实际载流子分布的一种较好的近似。
3.After introducing dopant and defect into the graphene, the interaction between graphene and small molecules could be strengthened.
当在石墨烯表面引入掺杂剂和缺陷后,其与气体分子之间的相互作用被明显地增强。
4.Results showed that the basic physical properties and microstructure of recrystallized graphite with dopant zirconium was improved.
结果表明,掺杂锆使再结晶石墨的基本物理性能及其微晶结构有较大幅度的改善。
5.The results showed: the sintering was improved because of the presence of the dopant .
结果表明:由于掺杂组分的存在,烧结情况得到了明显的改进。
6.The dopant is an electron acceptor and the cage is a donor which is different from the case of metallofullerenes.
在这种包合物中有机小分子是电子的受体,而碳笼则为电子的给体,这与金属富勒烯包合物恰恰相反。
7.The addition of a dopant can significantly alter the electrical properties of silicon.
添加一个掺杂剂可以显著改变硅的电气特性。
8.Researchers are exploring new types of dopants to improve solar cell efficiency.
研究人员正在探索新型的掺杂剂以提高太阳能电池的效率。
9.The dopant used in this experiment was phosphorus, which is known for its n-type conductivity.
本实验中使用的掺杂剂是磷,因其具有n型导电性而闻名。
10.In semiconductor manufacturing, controlling the concentration of the dopant is crucial for device performance.
在半导体制造中,控制掺杂剂的浓度对器件性能至关重要。
11.Different dopants can be introduced to create p-type or n-type semiconductors.
可以引入不同的掺杂剂来创建p型或n型半导体。
作文
In the realm of materials science and semiconductor technology, the term dopant refers to a substance that is intentionally introduced into a semiconductor material to alter its electrical properties. This process, known as doping, plays a crucial role in the manufacturing of various electronic components, such as diodes and transistors. By adding dopant elements, engineers can enhance the conductivity of silicon or other semiconductor materials, allowing them to function more efficiently in electronic devices. The most common types of dopants are classified into two categories: n-type and p-type. N-type dopants, such as phosphorus or arsenic, introduce extra electrons into the semiconductor lattice, which increases its negative charge carriers. On the other hand, p-type dopants, like boron or gallium, create 'holes' in the lattice structure, leading to an increase in positive charge carriers. This balance between n-type and p-type dopants is essential for creating p-n junctions, which are fundamental to the operation of many electronic devices. Understanding the role of dopants is vital for anyone interested in electronics or materials science. The precise control of doping levels can significantly affect the performance of a device. For example, in solar cells, the efficiency of light absorption and conversion into electricity is heavily influenced by the type and concentration of dopants used. Similarly, in integrated circuits, the electrical characteristics of transistors depend on the careful selection of dopants to achieve desired functionalities. Moreover, the use of dopants is not limited to silicon-based technologies. Researchers are exploring the potential of doping in emerging materials, such as graphene and organic semiconductors, to improve their electronic properties. As technology advances, the ability to manipulate dopants at the atomic level opens up new possibilities for the development of faster, more efficient electronic devices. In conclusion, the concept of dopant is integral to modern electronics and materials science. Its application in doping semiconductors allows for the enhancement of electrical properties, paving the way for innovative technologies. As we continue to push the boundaries of what is possible in electronics, understanding and mastering the use of dopants will remain a key focus for researchers and engineers alike.
在材料科学和半导体技术领域,术语dopant指的是一种故意引入半导体材料中的物质,以改变其电气特性。这个过程被称为掺杂,对各种电子元件的制造至关重要,例如二极管和晶体管。通过添加dopant元素,工程师可以增强硅或其他半导体材料的导电性,使其在电子设备中更有效地工作。 最常见的dopant类型分为两类:n型和p型。n型dopant(如磷或砷)会在半导体晶格中引入额外的电子,从而增加其负电荷载体。另一方面,p型dopant(如硼或镓)则在晶格结构中产生“空穴”,导致正电荷载体的增加。这种n型和p型dopant之间的平衡对于创建p-n结至关重要,而p-n结是许多电子设备运行的基础。 理解dopant的作用对任何对电子或材料科学感兴趣的人来说都是至关重要的。掺杂水平的精确控制可以显著影响设备的性能。例如,在太阳能电池中,光的吸收效率和转化为电能的能力在很大程度上受到所使用的dopant类型和浓度的影响。同样,在集成电路中,晶体管的电气特性依赖于对dopant的仔细选择,以实现所需的功能。 此外,dopant的使用不仅限于基于硅的技术。研究人员正在探索在新兴材料(如石墨烯和有机半导体)中掺杂的潜力,以改善其电子特性。随着技术的进步,在原子级别操控dopant的能力为开发更快、更高效的电子设备开辟了新的可能性。 总之,dopant的概念是现代电子学和材料科学的核心。它在掺杂半导体中的应用使得电气特性的增强成为可能,为创新技术铺平了道路。随着我们继续推动电子技术的边界,理解和掌握dopant的使用将始终是研究人员和工程师关注的重点。
文章标题:dopant的意思是什么
文章链接:https://www.liuxue886.cn/danci/265946.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论