decimally
简明释义
adv. 用十进制;用小数
英英释义
In a manner relating to or expressed in decimal form, which is based on the number ten. | 以十进制形式表达或相关的方式。 |
单词用法
以小数形式表达的 | |
四舍五入到小数位 | |
小数精确的 | |
小数显著的 |
同义词
数字地 | 数据被数字化存储以提高准确性。 | ||
分数地 | The results were calculated fractionally to ensure precision. | 结果是通过分数方式计算的,以确保精确。 |
反义词
整体的 | 这个整数大于小数。 | ||
整数 | 在数学中,整数不能有小数点。 |
例句
1.Calculating year of computation is pressed when basic annuities, be not worth part of a year, the reservation when conversion arrives decimally hind two.
在计算基本养老金时按年计算,不足一年的部分,换算时保留到小数点后两位。
2.Calculating year of computation is pressed when basic annuities, be not worth part of a year, the reservation when conversion arrives decimally hind two.
在计算基本养老金时按年计算,不足一年的部分,换算时保留到小数点后两位。
3.Here, the original values won't be "decimally accurate" to start with, so it's not important for the expected results to maintain the "decimal accuracy".
在这里,原来的值将不会是“小数点精确”下手,所以它不是重要的了预期的效果,以保持“十进制精度”。
4.The data was rounded decimally to two places for easier analysis.
数据被四舍五入到两个小数位,以便于分析。
5.When calculating the budget, we need to present the figures decimally.
在计算预算时,我们需要以小数形式呈现数字。
6.The results are displayed decimally to ensure accuracy in reporting.
结果以小数形式显示,以确保报告的准确性。
7.Please enter your weight decimally, including any fractions.
请输入你的体重,以小数形式,包括任何小数部分。
8.The software converts all measurements decimally for consistency.
该软件将所有测量值转换为小数形式,以保持一致性。
作文
In the world of mathematics and science, precision is crucial. One of the fundamental ways we express numbers is through the decimal system. This system allows us to represent values in a way that is both intuitive and practical. When we talk about numbers being expressed decimally, we refer to their representation using the base-10 numeral system, which is the most commonly used number system in everyday life. Understanding how to work with numbers decimally is essential for various applications, from basic arithmetic to complex scientific calculations. The decimal system operates on the principle of place value, where the position of a digit in a number determines its value. For instance, in the number 345.67, the digit '3' is in the hundreds place, '4' is in the tens place, '5' is in the units place, and so forth. Each place represents a power of ten, making it easy to understand the magnitude of each digit. When we perform calculations, especially when adding or subtracting numbers decimally, we must align the decimal points to ensure accuracy. This alignment is crucial because it helps maintain the correct place value for each digit involved in the operation. Moreover, the concept of fractions can also be expressed decimally. For example, the fraction 1/2 can be represented as 0.5 in decimal form. This conversion is not only useful for simplifying calculations but also for making comparisons between different quantities. By expressing numbers in a decimally structured format, we can easily see which numbers are larger or smaller without the need for complex fraction comparisons. In real-world applications, the importance of understanding how to deal with numbers decimally cannot be overstated. In finance, for instance, interest rates, prices, and budgets are often calculated decimally. A small error in decimal placement can lead to significant financial discrepancies. Similarly, in the field of engineering, measurements are frequently expressed decimally, and precision is paramount to ensure safety and functionality in design and construction. In educational settings, students are taught to work with numbers decimally from an early age. They learn to add, subtract, multiply, and divide using decimals, which lays the foundation for more advanced mathematical concepts later on. This early exposure helps students develop a strong numerical sense, enabling them to tackle increasingly complex problems with confidence. However, working decimally also comes with its challenges. For instance, rounding errors can occur when dealing with long decimal numbers, leading to inaccuracies in results. It is essential for students and professionals alike to be aware of these potential pitfalls and to develop strategies to minimize errors. Techniques such as significant figures and rounding rules are critical in maintaining the integrity of calculations involving decimal numbers. In conclusion, the ability to understand and manipulate numbers decimally is a vital skill across many disciplines. Whether in mathematics, science, finance, or engineering, the decimal system provides a clear and effective way to represent and work with numerical data. As we continue to navigate a world filled with quantitative information, mastering the use of decimals will remain an essential component of our analytical toolkit. The significance of being able to express and interpret numbers decimally cannot be underestimated, as it plays a pivotal role in our daily decision-making processes and professional practices.
在数学和科学的世界中,精确性至关重要。我们表达数字的基本方式之一是通过十进制系统。这个系统让我们以直观和实用的方式表示值。当我们谈论数字以十进制表示时,我们指的是它们使用基于10的数字系统的表示,这在日常生活中是最常用的数字系统。理解如何以十进制处理数字对各种应用至关重要,从基本算术到复杂的科学计算。 十进制系统基于位置值的原则,其中数字在数字中的位置决定了其值。例如,在数字345.67中,数字'3'位于百位,'4'位于十位,'5'位于个位,等等。每个位置代表10的幂,使我们易于理解每个数字的大小。在进行计算时,尤其是在加法或减法时,我们必须对齐小数点以确保准确性。这种对齐至关重要,因为它有助于保持参与运算的每个数字的正确位置值。 此外,分数的概念也可以以十进制表示。例如,分数1/2可以表示为0.5的十进制形式。这种转换不仅对简化计算有用,还便于比较不同数量。通过以十进制结构格式表示数字,我们可以轻松看到哪些数字更大或更小,而无需复杂的分数比较。 在现实世界的应用中,理解如何处理数字十进制的重要性不容小觑。在金融领域,例如,利率、价格和预算通常以十进制计算。小数点位置的微小错误可能导致重大的财务差异。同样,在工程领域,测量通常以十进制表示,精度对于确保设计和施工的安全性和功能性至关重要。 在教育环境中,学生从小就被教导如何处理数字十进制。他们学习使用小数进行加、减、乘、除,这为以后更高级的数学概念奠定了基础。这种早期的接触有助于学生培养强烈的数字感,使他们能够自信地应对越来越复杂的问题。 然而,以十进制工作也带来了一些挑战。例如,在处理长小数时可能会发生舍入误差,从而导致结果不准确。学生和专业人士都必须意识到这些潜在的陷阱,并制定策略以最小化错误。诸如有效数字和舍入规则等技术在保持涉及小数的计算的完整性方面至关重要。 总之,理解和操作数字十进制的能力是许多学科中的一项重要技能。无论是在数学、科学、金融还是工程领域,十进制系统提供了一种清晰有效的方式来表示和处理数字数据。随着我们继续在充满量化信息的世界中导航,掌握小数的使用将始终是我们分析工具箱中的一个基本组成部分。能够以十进制表达和解释数字的重要性不可低估,因为它在我们的日常决策过程中和专业实践中发挥着关键作用。
文章标题:decimally的意思是什么
文章链接:https://www.liuxue886.cn/danci/266399.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论