electrophile
简明释义
英[ɪˈlektrəʊfaɪl]美[ɪˈlektrəˌfaɪl]
n. [有化] 亲电体;亲电子试剂
英英释义
An electrophile is a species that accepts an electron pair from a nucleophile to form a chemical bond. | 电亲体是指一种接受来自亲核试剂的电子对以形成化学键的物质。 |
单词用法
强亲电试剂 | |
亲电加成 | |
亲电-亲核反应 | |
亲电取代 |
同义词
反义词
亲核试剂 | 亲核试剂通过提供电子对来形成化学键。 |
例句
1.Electrophile chemical is the major pollutant in the environment, this is very concerned by many of environmental scientists.
亲电性化学物是环境中的主要污染物,所以越来越引起环境科学研究者的高度关注。
2.Electrophile chemical is the major pollutant in the environment, this is very concerned by many of environmental scientists.
亲电性化学物是环境中的主要污染物,所以越来越引起环境科学研究者的高度关注。
3.Reactions of Carbonyl Compounds with the Carbonyl Group as an Electrophile with H, C, N and O Nucleophiles.
作为亲电体的羰基与作为亲核体的H,C,N和O的羰基化合物反应。
4.In organic chemistry, an electrophile 亲电试剂 is a species that accepts an electron pair from a nucleophile.
在有机化学中,electrophile 亲电试剂 是一种接受来自亲核试剂的电子对的物质。
5.The reaction between a nucleophile and an electrophile 亲电试剂 is fundamental to many synthesis processes.
亲核试剂与electrophile 亲电试剂之间的反应是许多合成过程的基础。
6.Common examples of electrophiles 亲电试剂 include carbocations and carbonyl compounds.
常见的electrophiles 亲电试剂包括碳正离子和羰基化合物。
7.In the electrophilic aromatic substitution, the electrophile 亲电试剂 attacks the aromatic ring.
在亲电芳香取代反应中,electrophile 亲电试剂攻击芳香环。
8.An electrophile 亲电试剂 can be generated in situ during a chemical reaction.
在化学反应中,可以原位生成electrophile 亲电试剂。
作文
In the field of organic chemistry, understanding the behavior of different types of molecules is crucial for predicting chemical reactions. One important category of molecules is known as an electrophile, which refers to a species that is electron-deficient and can accept an electron pair from a nucleophile during a chemical reaction. This characteristic makes electrophiles key players in many organic reactions, particularly in electrophilic addition and substitution processes. To better grasp the concept of electrophiles, let’s consider their role in a common reaction: the addition of hydrogen halides to alkenes. In this reaction, the alkene acts as a nucleophile due to the presence of a double bond, which has a region of high electron density. When a hydrogen halide, such as HCl, is introduced, the hydrogen atom can act as an electrophile. It is positively charged and seeks to pair with the electrons from the alkene, leading to the formation of a more stable product. The nature of electrophiles can vary significantly. Some are simple molecules, like hydrogen halides, while others can be more complex, such as carbonyl compounds or nitro groups. Each type of electrophile has distinct reactivity patterns based on its structure and the surrounding environment. For instance, stronger electrophiles tend to have a greater positive charge or a more significant electron-withdrawing group, making them more reactive towards nucleophiles. Moreover, the concept of electrophiles extends beyond just simple addition reactions. In aromatic substitution reactions, for example, the aromatic ring acts as a nucleophile, and various electrophiles can replace hydrogen atoms on the ring. This includes halogens, sulfonic acids, and even acyl groups. The ability of the aromatic system to donate electrons allows it to interact with these electrophiles, leading to diverse and valuable chemical transformations. Understanding electrophiles is not only essential for academic purposes but also has practical implications in fields such as pharmaceuticals and materials science. Many drug synthesis pathways rely on the reactivity of electrophiles to create new compounds with desired biological activities. By manipulating the reactivity of different electrophiles, chemists can design and develop novel medications that target specific diseases. In conclusion, the term electrophile denotes a fundamental concept in organic chemistry, representing species that seek electrons to complete their valence shell. Their interactions with nucleophiles drive a vast array of chemical reactions, making them indispensable in both theoretical and practical chemistry. A deeper understanding of electrophiles enhances our ability to predict reaction outcomes and innovate in various scientific fields, ultimately contributing to advancements in technology and medicine.
在有机化学领域,理解不同类型分子的行为对于预测化学反应至关重要。一个重要的分子类别被称为亲电试剂,它指的是一种缺乏电子的物质,可以在化学反应中接受来自核苷酸的电子对。这一特性使得亲电试剂在许多有机反应中扮演着关键角色,特别是在亲电加成和取代反应过程中。 为了更好地掌握亲电试剂的概念,让我们考虑它们在一个常见反应中的作用:氢卤酸与烯烃的加成反应。在这一反应中,烯烃由于存在双键而充当核苷酸,具有高电子密度的区域。当氢卤酸,例如HCl,被引入时,氢原子可以作为亲电试剂。它带有正电荷,寻求与烯烃的电子配对,从而形成更稳定的产物。 亲电试剂的性质可能会显著变化。有些是简单的分子,比如氢卤酸,而其他则可能更复杂,如羰基化合物或硝基基团。每种亲电试剂根据其结构和周围环境具有不同的反应性模式。例如,较强的亲电试剂往往具有更大的正电荷或更显著的电子吸引基团,使其对核苷酸更具反应性。 此外,亲电试剂的概念不仅限于简单的加成反应。在芳香取代反应中,例如,芳香环充当核苷酸,而各种亲电试剂可以取代环上的氢原子。这包括卤素、磺酸和甚至酰基。芳香系统捐赠电子的能力使其能够与这些亲电试剂相互作用,从而导致多样且有价值的化学转化。 理解亲电试剂不仅对学术目的至关重要,还在制药和材料科学等领域具有实际意义。许多药物合成路径依赖于亲电试剂的反应性,以创造具有期望生物活性的新的化合物。通过操控不同亲电试剂的反应性,化学家可以设计和开发针对特定疾病的新型药物。 总之,术语亲电试剂代表了有机化学中的一个基本概念,表示寻求电子以完成其价电子层的物质。它们与核苷酸的相互作用推动了广泛的化学反应,使它们在理论和实用化学中不可或缺。深入理解亲电试剂增强了我们预测反应结果和在各个科学领域创新的能力,最终促进了技术和医学的进步。
文章标题:electrophile的意思是什么
文章链接:https://www.liuxue886.cn/danci/266765.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论