polyhedral
简明释义
英[ˌpɒliˈhiːdrəl;ˌpɒliˈhedrəl]美[ˌpɑːliˈhiːdrəlˌˌpɑːliˈhedrəl
adj. [数] 多面的;[数] 多面体的
英英释义
Relating to or having the shape of a polyhedron, which is a solid figure with many flat surfaces, typically more than six. | 与多面体相关或具有多面体形状的,通常是指具有多个平面表面的固体图形,通常超过六个。 |
单词用法
多面体模型 | |
多面体表面 | |
多面体角 | |
多面体图 | |
多面体复合体 | |
凸多面体 | |
规则多面体 | |
非凸多面体 |
同义词
反义词
例句
1.The formation of polyhedral cages and clusters has only recently been recognized as an important and widespread phenomenon.
多面体的笼状和簇状结构的形成只是最近才被认为是一种重要而又普通的现象。
2.This algorithm can deal with polyhedral model only, however, with the introduction of face region, it can be combined with model o.
本算法适用于平面多面体,通过面域作为中介,容易实现与模型引导方法的融合,从而拓展到二次曲面体的重。
3.Three algorithms are presented for computing the shortest path between two arbitrary points on a polyhedral surface: One is an approximate algorithm;
提出计算多面体面上任意两点之间最短路径的算法:近似算法、最短路径或近似最短路径算法。
4.Disclosed herein is a method for forming an interlayer dielectric film for a semiconductor device by using a polyhedral molecular silsesquioxane.
此处公开了一种使用多面体分子倍半硅氧烷形成半导体器件所用的层间电介质膜的方法。
5.Panoramic images, varying according to projection models, can generally be divided into polyhedral panoramic images, spherical panoramic images and 360-degree panoramic cylinders.
全景图像根据投影模型的不同,一般可以分为多面体全景图像、球面全景图像和360度柱面全景。
6.In local area, we can arrive at preferable precision by GPS height fitting using polyhedral function model.
高程异常一般呈多曲面分布,在局部区域内,建立多面函数模型进行GPS高程拟合,可以达到较高的精度。
7.For an arbitrary polyhedral graph, four classes of polyhedral links can be obtained by applying the operation of 'x-tangle covering 'to the related reduced sets.
对任意一个多面体图,四类多面体链环可以通过应用‘X -缠绕覆盖’到相关的简化集中得到。
8.Panoramic images, varying according to projection models, can generally be divided into polyhedral panoramic images, spherical panoramic images and 360-degree panoramic cylinders.
全景图像根据投影模型的不同,一般可以分为多面体全景图像、球面全景图像和360度柱面全景。
9.This reveals preliminarily that many structural polyhedra and coordinated polyhedral molecules possess the character of intersecting plane or folding intersection between the …
并初步揭示了许多结构多面体和配位多面体分子具有交错面或由两个多面体交错叠合的性质。
10.The architect designed a stunning building with a polyhedral 多面体的 structure that catches the light beautifully.
建筑师设计了一座令人惊叹的建筑,具有一个多面体的结构,能够美丽地反射光线。
11.In mathematics, a polyhedral 多面体的 shape is defined as a solid in three-dimensional space with flat polygonal faces.
在数学中,多面体的形状被定义为一种在三维空间中具有平面多边形面的固体。
12.The artist used polyhedral 多面体的 forms to create a unique sculpture that intrigued viewers.
艺术家使用多面体的形状创作了一件独特的雕塑,引起了观众的兴趣。
13.We studied polyhedral 多面体的 geometry in class, focusing on the properties of various solids.
我们在课堂上研究了多面体的几何学,重点关注各种固体的性质。
14.The game features polyhedral 多面体的 dice that add a fun twist to traditional gameplay.
这个游戏采用了多面体的骰子,为传统游戏增添了趣味。
作文
In the realm of mathematics and geometry, the study of shapes and forms is vast and intricate. One fascinating category of shapes is known as polyhedral, which refers to three-dimensional figures composed of flat polygonal faces, straight edges, and vertices. These shapes are not only significant in theoretical mathematics but also have practical applications in various fields such as architecture, computer graphics, and even molecular biology. Understanding polyhedral structures can provide insights into the complexities of space and form. To begin with, the term polyhedral comes from the Greek words 'poly', meaning many, and 'hedron', meaning face. Therefore, a polyhedral object typically has multiple faces, which can vary in shape and size. Common examples of polyhedral forms include cubes, tetrahedrons, and octahedrons. Each of these shapes has its own unique properties and characteristics that make them interesting to study. For instance, a cube has six square faces, twelve edges, and eight vertices, while a tetrahedron has four triangular faces, six edges, and four vertices. The beauty of polyhedral shapes lies in their symmetry and structure. Many polyhedral shapes exhibit symmetrical properties that make them aesthetically pleasing and mathematically intriguing. The study of symmetry in polyhedral forms leads to the exploration of geometric transformations, such as rotations and reflections, which are fundamental concepts in both mathematics and art. Moreover, polyhedral structures play a crucial role in various scientific fields. In chemistry, for example, the arrangement of atoms in a molecule can often be described using polyhedral models. The geometry of certain molecules, such as carbon compounds, can be represented as polyhedral shapes, allowing scientists to visualize and predict their behavior. This connection between geometry and chemistry highlights the interdisciplinary nature of polyhedral studies. In addition to their scientific significance, polyhedral shapes have inspired artists and architects throughout history. The use of polyhedral designs can be seen in various architectural marvels, where the interplay of light and shadow creates stunning visual effects. Artists like M.C. Escher have famously explored polyhedral forms in their work, demonstrating how these shapes can challenge our perceptions of space and dimension. Furthermore, the study of polyhedral can also lead to advancements in technology. In computer graphics, polyhedral models are essential for rendering three-dimensional objects in virtual environments. By understanding the mathematical principles behind polyhedral shapes, computer scientists can create more realistic simulations and animations that enhance our experience of digital worlds. In conclusion, the concept of polyhedral shapes extends far beyond mere geometric curiosity. From their mathematical foundations to their applications in science, art, and technology, polyhedral structures offer a rich tapestry of knowledge and inspiration. As we continue to explore the world of polyhedral forms, we uncover not only the beauty of these shapes but also their profound impact on various aspects of our lives. Embracing the study of polyhedral shapes allows us to appreciate the interconnectedness of mathematics, science, and art, ultimately enriching our understanding of the universe around us.
在数学和几何的领域中,形状和形式的研究是广泛而复杂的。其中一个迷人的形状类别被称为多面体,它指的是由平面多边形面、直边和顶点组成的三维图形。这些形状不仅在理论数学中具有重要意义,而且在建筑、计算机图形学甚至分子生物学等多个领域也有实际应用。理解多面体结构可以提供对空间和形式复杂性的深入见解。 首先,术语多面体源自希腊语中的“poly”,意为许多,以及“hedron”,意为面。因此,多面体对象通常具有多个面,这些面可以在形状和大小上有所不同。常见的多面体形状包括立方体、四面体和八面体。每种这些形状都有其独特的属性和特征,使它们值得研究。例如,立方体有六个正方形面、十二条边和八个顶点,而四面体则有四个三角形面、六条边和四个顶点。 多面体形状的美在于它们的对称性和结构。许多多面体形状展现出对称属性,使其在美学上令人愉悦,并在数学上引人入胜。对多面体形状中对称性的研究引导我们探索几何变换,例如旋转和反射,这些都是数学和艺术中的基本概念。 此外,多面体结构在多个科学领域中发挥着重要作用。例如,在化学中,分子中原子的排列通常可以用多面体模型来描述。某些分子的几何形状,例如碳化合物,可以表示为多面体形状,从而使科学家能够可视化和预测其行为。这种几何与化学之间的联系突显了多面体研究的跨学科性质。 除了科学意义之外,多面体形状还启发了历史上许多艺术家和建筑师。在各种建筑奇迹中可以看到多面体设计的使用,其中光与影的相互作用创造出惊艳的视觉效果。艺术家如M.C.埃舍尔在他们的作品中著名地探索了多面体形式,展示了这些形状如何挑战我们对空间和维度的感知。 此外,对多面体的研究也可能推动技术的发展。在计算机图形学中,多面体模型对于在虚拟环境中渲染三维对象至关重要。通过理解多面体形状背后的数学原理,计算机科学家可以创建更逼真的模拟和动画,增强我们对数字世界的体验。 总之,多面体形状的概念远远超出了单纯的几何好奇心。从它们的数学基础到它们在科学、艺术和技术中的应用,多面体结构提供了丰富的知识和灵感。当我们继续探索多面体形式的世界时,我们不仅揭示了这些形状的美丽,还揭示了它们对我们生活各个方面的深远影响。拥抱多面体形状的研究使我们能够欣赏数学、科学和艺术之间的相互联系,最终丰富我们对周围宇宙的理解。
文章标题:polyhedral的意思是什么
文章链接:https://www.liuxue886.cn/danci/266902.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论