pyrimidines
简明释义
英[pɪrɪˈmɪdɪnz]美[paɪˈrɪməˌdiːnz;pɪrɪˈmɪdɪnz]
n. [有化]嘧啶(pyrimidine 的复数形式)
英英释义
单词用法
嘧啶碱 | |
嘧啶衍生物 | |
嘧啶合成 | |
嘧啶代谢 | |
嘧啶核苷酸 | |
嘧啶类似物 |
同义词
嘧啶碱 | Pyrimidine bases such as cytosine and thymine are essential components of DNA. | 如胞嘧啶和胸腺嘧啶等嘧啶碱是DNA的重要组成部分。 | |
核碱基 | Nucleobases play a crucial role in the structure of nucleic acids. | 核碱基在核酸的结构中起着至关重要的作用。 |
反义词
嘌呤 | Purines are one of the two types of nitrogenous bases found in nucleic acids. | 嘌呤是核酸中发现的两种氮碱基之一。 |
例句
1.Purines and pyrimidines have widespread and specific action in many tissues of both invertebrates and vertebrates.
在脊椎类和无脊椎类动物的多种组织中,嘧啶与嘌呤类物质具有广泛的特异性作用。
2.Purines and pyrimidines have widespread and specific action in many tissues of both invertebrates and vertebrates.
在脊椎类和无脊椎类动物的多种组织中,嘧啶与嘌呤类物质具有广泛的特异性作用。
3.The most abundant bases are cytosine, thiamine , and uracil ( pyrimidines ) and adenine and guanine ( purines ) .
最丰富的碱基是胞嘧啶, 胸腺嘧啶, 尿嘧啶,腺嘌呤和鸟嘌呤。
4.The most abundant bases are cytosine, thiamine, and uracil (pyrimidines) and adenine and guanine (purines).
最丰富的碱基是胞嘧啶,胸腺嘧啶,尿嘧啶,腺嘌呤和鸟嘌呤。
5.The other two, thymine and cytosine, are single ring structures called pyrimidines.
另两个为胸腺嘧啶和胞嘧啶,即称为嘧啶的单环结构。
6.Adenine and guanine are purines and cytosine and thymine are pyrimidines.
腺嘌呤和鸟嘌呤是嘌呤和胞嘧啶和胸腺嘧啶是嘧啶。
7.In the synthesis of nucleotides, we often use different types of pyrimidines.
在核苷酸的合成中,我们经常使用不同类型的嘧啶。
8.The structure of pyrimidines is crucial for understanding DNA and RNA.
理解DNA和RNA时,嘧啶的结构至关重要。
9.Some drugs target the metabolism of pyrimidines to treat cancer.
一些药物通过靶向嘧啶的代谢来治疗癌症。
10.In biochemistry, pyrimidines include cytosine, thymine, and uracil.
在生物化学中,嘧啶包括胞嘧啶、胸腺嘧啶和尿嘧啶。
11.Researchers are exploring new ways to synthesize pyrimidines for pharmaceutical applications.
研究人员正在探索新的方法来合成用于药物应用的嘧啶。
作文
In the vast world of biochemistry, the study of nucleic acids is vital for understanding the fundamental processes of life. One of the key components of nucleic acids are the nitrogenous bases, which include two main categories: purines and pyrimidines. The term pyrimidines (嘧啶) refers to a specific group of nitrogenous bases that play a crucial role in the structure of DNA and RNA. The most common pyrimidines are cytosine, thymine, and uracil. Each of these bases has unique properties that contribute to the stability and functionality of nucleic acids. The structure of pyrimidines is characterized by a single six-membered ring containing nitrogen atoms. This simple structure contrasts with purines, which have a more complex two-ring system. The simplicity of pyrimidines allows them to fit neatly into the double helix of DNA, forming hydrogen bonds with their complementary purine bases. For instance, cytosine pairs with guanine, while thymine pairs with adenine. This base pairing is essential for the accurate replication of genetic information during cell division. In RNA, thymine is replaced by uracil, another member of the pyrimidines family. The presence of uracil instead of thymine in RNA is an interesting aspect of molecular biology. It is believed that this substitution may have evolutionary significance, as uracil is more energetically favorable to produce than thymine. This difference highlights how pyrimidines are not only critical for the structural integrity of nucleic acids but also reflect the evolutionary history of life on Earth. The biological importance of pyrimidines extends beyond their roles in DNA and RNA. They are also involved in various metabolic pathways, including the synthesis of nucleotides, which are the building blocks of nucleic acids. The synthesis of pyrimidines involves a series of enzymatic reactions that convert simple molecules into complex structures. This process is tightly regulated, as an imbalance in nucleotide levels can lead to diseases such as cancer. Furthermore, pyrimidines have been the focus of extensive research in the field of pharmacology. Many drugs are designed to target specific enzymes involved in the metabolism of pyrimidines, thereby influencing cellular processes. For example, certain antimetabolites used in cancer treatment mimic the structure of pyrimidines and inhibit their incorporation into nucleic acids, ultimately leading to cell death. In conclusion, pyrimidines are essential components of nucleic acids that play a significant role in the storage and transmission of genetic information. Their unique structure and properties contribute to the stability of DNA and RNA, while their involvement in metabolic pathways underscores their biological importance. As research continues to uncover the complexities of cellular processes, the study of pyrimidines remains a critical area of focus in biochemistry and molecular biology.
在生物化学的广阔世界中,核酸的研究对于理解生命的基本过程至关重要。核酸的一个关键组成部分是氮碱基,它包括两大类:嘌呤和嘧啶。术语嘧啶(pyrimidines)指的是一组特定的氮碱基,它们在DNA和RNA的结构中起着至关重要的作用。最常见的嘧啶是胞嘧啶、胸腺嘧啶和尿嘧啶。每一种碱基都有独特的属性,促进了核酸的稳定性和功能性。 嘧啶的结构特点是包含氮原子的单个六元环。这种简单的结构与具有更复杂双环系统的嘌呤形成对比。嘧啶的简单性使它们能够整齐地适应DNA的双螺旋结构,与其互补的嘌呤碱基形成氢键。例如,胞嘧啶与鸟嘌呤配对,而胸腺嘧啶则与腺嘌呤配对。这种碱基配对对于细胞分裂过程中遗传信息的准确复制至关重要。 在RNA中,胸腺嘧啶被尿嘧啶替代,后者是嘧啶家族的另一个成员。RNA中尿嘧啶的存在而非胸腺嘧啶是分子生物学的一个有趣方面。人们认为,这种替代可能具有进化意义,因为尿嘧啶的产生比胸腺嘧啶更具能量优势。这一差异突显了嘧啶不仅对核酸的结构完整性至关重要,而且反映了地球上生命的进化历史。 嘧啶的生物学重要性不仅限于它们在DNA和RNA中的角色。它们还参与各种代谢途径,包括核苷酸的合成,核苷酸是核酸的构建块。嘧啶的合成涉及一系列酶促反应,将简单分子转化为复杂结构。这个过程受到严格调控,因为核苷酸水平的不平衡可能导致诸如癌症等疾病。 此外,嘧啶也成为药理学领域广泛研究的焦点。许多药物旨在靶向参与嘧啶代谢的特定酶,从而影响细胞过程。例如,某些用于癌症治疗的抗代谢物模仿嘧啶的结构,并抑制其在核酸中的掺入,最终导致细胞死亡。 总之,嘧啶是核酸的重要组成部分,在遗传信息的储存和传递中发挥着重要作用。它们独特的结构和特性有助于DNA和RNA的稳定性,而它们在代谢途径中的参与则强调了它们的生物学重要性。随着研究不断揭示细胞过程的复杂性,对嘧啶的研究仍然是生物化学和分子生物学的关键关注领域。
文章标题:pyrimidines的意思是什么
文章链接:https://www.liuxue886.cn/danci/266924.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论