dimensionless
简明释义
英[dəˈmenʃənləs]美[dɪˈmenʃənləs]
adj. [物] 无量纲的;[数] 无因次的;无尺寸的
n. 无穷小量
英英释义
Having no physical dimensions; without units of measurement. | 没有物理维度;没有测量单位。 |
Referring to quantities that are pure numbers, not associated with any physical quantity. | 指的是纯数字的量,不与任何物理量相关。 |
单词用法
无量纲参数;无维参数 | |
无因次数;无量纲数 |
同义词
无单位的 | A dimensionless number is often used in fluid dynamics to describe flow characteristics. | 无量纲数常用于流体动力学中描述流动特性。 |
反义词
有维度的 | The dimensional analysis of the equation showed that it was consistent. | 方程的维度分析表明它是一致的。 | |
可测量的 | In physics, measurable quantities are essential for experiments. | 在物理学中,可测量的量对实验至关重要。 |
例句
1.The point of this convoluted procedure is that this combination of multiplication and division produces a pure, dimensionless number.
这个复杂运算过程的关键在于,这种乘除法混合物生成了一个纯粹的无因次数。
2.The dimensionless velocity-profile formula fits not only the depth average velocity profile but also velocity profile of each layer along depth.
利用速度剖面公式计算的垂线平均流速场与实测值符合较好。
3.However, the calibration of the dimensionless stress intensity factor, which is an important mechanical parameter, is still in question.
但是,该试样的重要力学参数即无量纲应力强度因子的标定尚有问题。
4.The dimensionless of the leakage water temperature and the stratum temperature in real Spaces were obtained by the contour integration method.
再利用围道积分对其进行逆变化,得到无量纲渗漏水温度及地层温度解析解。
5.The yield locus which liner dimensionless yield criterion can express the yield character of orthotropic materials better in the sense of physical.
文章给出了正交异性材料线性无量纲屈服准则的一般形式和平面应力状态下的特殊形式。
6.The results show that the Reynolds number, the fin inclined Angle, and the dimensionless channel height all influence the enhancement effect drastically.
结果表明:雷诺数、翅片倾角和通道高度都是强化效果的重要影响因素。
7.Dimensionless criteria that dictate the process are summarized, and influence of the ground-water flow on the heat transfer is discussed accordingly.
归纳得出影响这一传热过程的无量纲量,并分析了地下水渗流对地热换热器中温度场的影响。
8.In fluid dynamics, the Reynolds number is a dimensionless 无量纲的 quantity used to predict flow patterns in different fluid flow situations.
在流体动力学中,雷诺数是一个用于预测不同流体流动情况中流动模式的无量纲的量。
9.The coefficient of friction is often expressed as a dimensionless 无量纲的 value, making it easier to compare different materials.
摩擦系数通常以无量纲的值表示,这使得比较不同材料变得更加容易。
10.In statistics, the Z-score is a dimensionless 无量纲的 measure that describes how many standard deviations an element is from the mean.
在统计学中,Z分数是一个描述元素与均值相差多少个标准差的无量纲的度量。
11.When analyzing the efficiency of a system, we often use dimensionless 无量纲的 ratios like output to input.
在分析系统的效率时,我们常常使用输出与输入等无量纲的比率。
12.The Mach number is a dimensionless 无量纲的 quantity that represents the ratio of the speed of an object to the speed of sound.
马赫数是一个表示物体速度与声速之比的无量纲的量。
作文
In the realm of science and engineering, the concept of dimensionless quantities plays a crucial role in simplifying complex problems. A dimensionless number is a quantity that has no physical unit associated with it, meaning it is a pure number without dimensions such as length, mass, or time. This property allows scientists and engineers to compare different systems and phenomena without the complications that arise from units of measurement. For instance, the Reynolds number, which is used in fluid mechanics, is a dimensionless quantity that helps predict flow patterns in different fluid flow situations. By using this dimensionless number, engineers can determine whether a flow is laminar or turbulent, which is essential for designing efficient systems like pipelines or aircraft wings. The importance of dimensionless quantities extends beyond fluid mechanics. In thermodynamics, the Prandtl number is another example of a dimensionless number that relates the rate of momentum diffusion to thermal diffusion. This enables engineers to analyze heat transfer processes without needing to worry about the specific units of measurement they are using. As a result, dimensionless numbers facilitate the understanding of complex physical phenomena by allowing for the comparison of different systems on a common scale. Moreover, dimensionless quantities are vital in the field of dimensional analysis, which is a method used to reduce physical quantities to their fundamental dimensions. This technique helps in deriving relationships between different physical variables and is particularly useful when developing mathematical models. By transforming equations into dimensionless forms, researchers can identify key parameters that govern the behavior of the system being studied. This process not only enhances comprehension but also aids in experimental design by highlighting critical factors that influence outcomes. In addition to their practical applications, dimensionless quantities also have a philosophical aspect. They challenge our understanding of measurement and the nature of reality. Since dimensionless numbers are devoid of units, they prompt us to think abstractly about the relationships between different physical phenomena. This abstraction can lead to deeper insights and a more profound appreciation of the interconnectedness of various scientific principles. In conclusion, the concept of dimensionless quantities is fundamental in the fields of science and engineering. These quantities not only simplify complex problems but also enhance our understanding of the physical world. By enabling comparisons across different systems, facilitating dimensional analysis, and prompting philosophical reflections on measurement, dimensionless numbers serve as powerful tools in the pursuit of knowledge. As we continue to explore the intricacies of nature, the significance of dimensionless quantities will undoubtedly remain a cornerstone of scientific inquiry and innovation.
在科学和工程领域,无量纲量的概念在简化复杂问题方面发挥着至关重要的作用。无量纲数是与任何物理单位无关的量,这意味着它是一个没有长度、质量或时间等维度的纯数字。这一特性使得科学家和工程师能够在不受测量单位复杂性影响的情况下比较不同的系统和现象。例如,雷诺数是流体力学中使用的一个无量纲量,它有助于预测不同流体流动情况中的流动模式。通过使用这个无量纲数,工程师可以判断流动是层流还是湍流,这对设计高效的系统(如管道或飞机翼)至关重要。 无量纲量的重要性超出了流体力学。在热力学中,普朗特数是另一个无量纲数,它将动量扩散速率与热扩散速率联系起来。这使得工程师能够分析热传递过程,而无需担心他们使用的具体测量单位。因此,无量纲数通过允许在共同尺度上比较不同系统,促进了对复杂物理现象的理解。 此外,无量纲量在维度分析领域也至关重要,维度分析是一种用于将物理量简化为其基本维度的方法。这种技术有助于推导不同物理变量之间的关系,在开发数学模型时特别有用。通过将方程转换为无量纲形式,研究人员可以识别控制所研究系统行为的关键参数。这个过程不仅提高了理解能力,还通过突出影响结果的关键因素来帮助实验设计。 除了实际应用外,无量纲量还有哲学方面的意义。它们挑战我们对测量和现实本质的理解。由于无量纲数没有单位,它们促使我们抽象地思考不同物理现象之间的关系。这种抽象可能导致更深刻的见解,以及对各种科学原理相互关联性的更深刻的欣赏。 总之,无量纲量的概念在科学和工程领域是基础性的。这些量不仅简化了复杂问题,还增强了我们对物理世界的理解。通过使不同系统之间的比较成为可能、促进维度分析以及促使对测量进行哲学反思,无量纲数作为追求知识的强大工具。随着我们继续探索自然的复杂性,无量纲量的重要性无疑将继续成为科学探究和创新的基石。
文章标题:dimensionless的意思是什么
文章链接:https://www.liuxue886.cn/danci/268474.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论