logarithmic
简明释义
英[ˌlɒɡəˈrɪðmɪk]美[ˌlɔːɡəˈrɪðmɪk]
adj. 对数的
英英释义
Relating to or denoting logarithms, which are the powers to which a base must be raised to produce a given number. | 与对数相关或表示对数,对数是将一个基数提升到一定的幂以产生给定数字的值。 |
单词用法
[数]对数螺线 | |
对数函数 |
同义词
反义词
线性的 | 变量之间的关系是线性的。 | ||
指数的 | 人口的增长是指数的。 |
例句
1.These charts cover Archimedes hobs, logarithmic spiral hobs as well as topping hobs.
这些图解适用于阿基米德滚刀、对数螺线滚刀、以及全切式滚刀。
2."U," in a logarithmic way, means about 30 times louder than the ordinary noise of deep space.
用对数表示,这一信号强度相当于外太空的普通声音的30倍。
3.To avoid this ill effect, cylindrical rollers have long been produced with a logarithmic profile (Figure 1.24).
为了避免这一副作用,圆柱滚子已经很长时间都被生产成一个对数轮廓(图1.24)。
4.The buckets are defined using logarithmic time based on five buckets.
这些buckets使用基于5 个bucket 的对数时间定义。
5.Bearings with logarithmic profiles are less susceptible to shaft deflection and misalignment.
有对数轮廓的轴承对歪斜和角误差不太敏感。
6.The first graph he designed was a bubble chart that had double logarithmic axes, with income on one axis and health on the other.
他设计的第一个图形是一个带有一对对数坐标轴的气泡图,一条轴显示的是收入,另一条是健康。
7.It is a hyper fast growing logarithmic scale, not linear.
这是一个超快速增长的对数的规模,不是直线。
8.The logarithmic 对数的 scale on this graph makes it easier to visualize exponential growth.
这个图表上的logarithmic 对数的比例尺使得可视化指数增长变得更容易。
9.In computer science, algorithms with logarithmic 对数的 time complexity are considered efficient.
在计算机科学中,具有logarithmic 对数的时间复杂度的算法被认为是高效的。
10.The logarithmic 对数的 function is often used in sound intensity measurements.
在声音强度测量中,通常使用logarithmic 对数的函数。
11.The population growth can be modeled using a logarithmic 对数的 equation.
人口增长可以用一个logarithmic 对数的方程进行建模。
12.The Richter scale for measuring earthquakes is a logarithmic 对数的 scale.
用于测量地震的里氏震级是一个logarithmic 对数的尺度。
作文
In the realm of mathematics, few concepts are as fascinating and crucial as the idea of logarithms. A logarithm is essentially the inverse operation to exponentiation, which means it helps us solve equations where a number is raised to a power. The term logarithmic (对数的) is often used to describe functions or scales that relate to logarithms. Understanding logarithmic (对数的) relationships can greatly enhance our comprehension of various scientific and mathematical phenomena. To illustrate the importance of logarithmic (对数的) functions, let us consider the concept of exponential growth. In nature, many processes exhibit exponential growth, such as population increase, compound interest in finance, and even the spread of diseases. When we plot these processes on a standard linear graph, they can become unwieldy and difficult to interpret. However, when we use a logarithmic (对数的) scale, the data becomes more manageable and easier to analyze. For example, if we were to graph the population of a city over time using a logarithmic (对数的) scale, we would observe that the initial rapid growth would appear less steep compared to a linear scale. This allows us to visualize the growth rate more clearly and understand how it changes over time. Such visualizations are invaluable in fields ranging from ecology to economics, where understanding growth patterns is essential. Moreover, the logarithmic (对数的) scale is not only useful for displaying growth but also for measuring sound intensity, earthquake magnitudes, and even pH levels in chemistry. For instance, the decibel scale used for sound is logarithmic (对数的), meaning that a sound that is 10 decibels higher is actually ten times more intense. This logarithmic (对数的) relationship allows us to quantify sounds that vary widely in intensity without overwhelming our senses. In addition to practical applications, the concept of logarithmic (对数的) functions appears frequently in theoretical mathematics. The logarithmic (对数的) function itself is defined as the power to which a base must be raised to produce a given number. For example, if we take the base 10, the logarithmic (对数的) function tells us what power we need to raise 10 to in order to get a certain number. This relationship is fundamental in solving exponential equations and has far-reaching implications in various branches of science. Furthermore, the concept of logarithmic (对数的) growth is often contrasted with linear growth. While linear growth adds a constant amount over time, logarithmic (对数的) growth increases at a decreasing rate. This distinction is critical in fields like computer science, where algorithms are often evaluated based on their time complexity. An algorithm with logarithmic (对数的) time complexity is significantly faster than one with linear time complexity, especially as the size of the input data grows. In conclusion, the term logarithmic (对数的) encapsulates a wide range of mathematical principles and real-world applications. From understanding growth patterns in nature to analyzing complex data in technology, the ability to grasp logarithmic (对数的) relationships is essential. As we continue to explore the vast landscape of mathematics and its applications, the significance of logarithmic (对数的) concepts will undoubtedly remain a cornerstone of our understanding.
在数学领域,logarithmic(对数的)这一概念既迷人又至关重要。对数本质上是指数运算的逆操作,这意味着它帮助我们解决一个数字被提升到一个幂的方程。logarithmic(对数的)这个术语常用于描述与对数相关的函数或刻度。理解logarithmic(对数的)关系可以极大地增强我们对各种科学和数学现象的理解。 为了说明logarithmic(对数的)函数的重要性,让我们考虑指数增长的概念。在自然界中,许多过程表现出指数增长,例如人口增加、金融中的复利,甚至疾病的传播。当我们在标准线性图上绘制这些过程时,它们可能变得难以处理和解释。然而,当我们使用logarithmic(对数的)刻度时,数据变得更易于管理和分析。 例如,如果我们使用logarithmic(对数的)刻度绘制某城市的人口随时间变化的图表,我们会观察到最初的快速增长在与线性刻度相比时看起来不那么陡峭。这使我们能够更清晰地可视化增长率,并理解其随时间的变化。这种可视化在生态学、经济学等领域无价,理解增长模式至关重要。 此外,logarithmic(对数的)刻度不仅用于显示增长,还用于测量声音强度、地震震级,甚至化学中的pH值。例如,用于声音的分贝刻度是logarithmic(对数的),这意味着比10分贝高的声音实际上是十倍更强。这种logarithmic(对数的)关系使我们能够量化强度差异较大的声音,而不会让我们的感官感到不堪重负。 除了实际应用,logarithmic(对数的)函数的概念经常出现在理论数学中。logarithmic(对数的)函数本身被定义为必须将底数提升到的幂,以产生给定数字。例如,如果我们以10为底,logarithmic(对数的)函数告诉我们需要将10提升到什么幂才能得到某个数字。这种关系在解决指数方程时是基础,并在各个科学领域具有深远的影响。 此外,logarithmic(对数的)增长的概念通常与线性增长形成对比。线性增长在时间上增加一个恒定的数量,而logarithmic(对数的)增长则以递减的速度增加。这一区别在计算机科学等领域至关重要,算法通常根据其时间复杂度进行评估。具有logarithmic(对数的)时间复杂度的算法比具有线性时间复杂度的算法快得多,尤其是在输入数据的大小增加时。 总之,logarithmic(对数的)这一术语概括了广泛的数学原理和现实世界的应用。从理解自然界中的增长模式到分析技术中的复杂数据,掌握logarithmic(对数的)关系是必不可少的。随着我们继续探索数学及其应用的广阔领域,logarithmic(对数的)概念的重要性无疑将继续成为我们理解的基石。
文章标题:logarithmic的意思是什么
文章链接:https://www.liuxue886.cn/danci/268482.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论