transuranium
简明释义
英[ˌtrænsjʊəˈreɪnɪəm]美[ˌtrænzjʊəˈrenɪəm]
n. 铀后元素
adj. 超铀的;铀后的
英英释义
单词用法
超铀系列 | |
超铀核反应 | |
超铀生产 | |
合成超铀元素 | |
研究超铀化学 | |
检测超铀材料 |
同义词
超重元素 | Superheavy elements are those with atomic numbers greater than uranium. | 超重元素是指原子序数大于铀的元素。 | |
锕系元素 | The actinide series includes transuranium elements like plutonium and americium. | 锕系元素系列包括像钚和美洲铀这样的超铀元素。 |
反义词
铀 | 铀被用作核反应堆中的燃料。 | ||
轻元素 | Light elements like hydrogen and helium are abundant in the universe. | 氢和氦等轻元素在宇宙中非常丰富。 |
例句
1.Some problems are discussed in this paper which is"spale-restriction", "time-restriction"and"cross-section-restriction on the transuranium s limit".
本文讨论了超铀元素存在的“空间限制”、“时间限制”和“生成截面限制”。
2.Some problems are discussed in this paper which is"spale-restriction", "time-restriction"and"cross-section-restriction on the transuranium s limit".
本文讨论了超铀元素存在的“空间限制”、“时间限制”和“生成截面限制”。
3.An introduction to environmental level of transuranium elements and a review of the recent advance in radiochemical analyses of them are made.
本文介绍了超铀元素的环境水平,对它们的放射化学分析的进展进行了述评。
4.Transuranium element Any of the chemical elements after uranium in the periodic table (with atomic Numbers greater than 92).
周期表中铀以后的任何化学元素(原子序数大于92)。
5.Extraction of transuranium elements from HEDPA medium by TRPO is studied.
研究了在HEDPA介质中TRPO对超铀元素的萃取性能。
6.The discovery of new transuranium 超铀元素 elements has opened up new avenues in nuclear research.
新发现的transuranium 超铀元素 元素为核研究开辟了新的方向。
7.Scientists are studying the properties of transuranium 超铀元素 to understand their potential applications in medicine.
科学家正在研究transuranium 超铀元素 的性质,以了解它们在医学中的潜在应用。
8.The production of transuranium 超铀元素 requires advanced nuclear reactors and particle accelerators.
生产transuranium 超铀元素 需要先进的核反应堆和粒子加速器。
9.Many transuranium 超铀元素 are radioactive and have very short half-lives, making them difficult to study.
许多transuranium 超铀元素 是放射性的,并且具有非常短的半衰期,使得它们难以研究。
10.The field of chemistry is constantly evolving with the synthesis of new transuranium 超铀元素.
随着新transuranium 超铀元素 的合成,化学领域不断发展。
作文
The field of chemistry and physics is vast, encompassing a wide range of elements and compounds. Among these, there exists a fascinating category known as transuranium, which refers to elements that have an atomic number greater than that of uranium, specifically those with atomic numbers above 92. This group includes elements such as neptunium, plutonium, and americium, which are not found naturally and must be synthesized in laboratories. The study of transuranium elements is crucial for various applications, including nuclear energy, medical treatments, and scientific research. Historically, the discovery of transuranium elements began in the early 20th century. Scientists like Edwin McMillan and Glenn T. Seaborg played pivotal roles in identifying these elements. Their work not only expanded the periodic table but also opened up new avenues for research and development in nuclear physics. For instance, plutonium, one of the most well-known transuranium elements, became a key component in the development of nuclear weapons and reactors. This dual-use nature of transuranium elements raises ethical and safety concerns that continue to be debated in scientific and political circles today. In addition to their historical significance, transuranium elements have practical applications that benefit society. For example, americium-241 is widely used in smoke detectors, providing a reliable means of detecting fires in homes and buildings. Furthermore, certain transuranium isotopes are employed in radiation therapy for cancer treatment, showcasing their potential for positive impact on human health. Despite their benefits, the handling and disposal of transuranium elements present significant challenges. These elements are often radioactive, posing risks to both human health and the environment. Therefore, stringent safety protocols are essential when working with them. Researchers are continuously exploring methods to mitigate the risks associated with transuranium waste, including advanced containment strategies and recycling techniques. Moreover, the study of transuranium elements contributes to our understanding of fundamental physics. By examining their properties and behaviors, scientists can gain insights into the forces that govern atomic interactions and the stability of matter. This research not only enhances our knowledge of the universe but also drives innovation in various technological fields. In conclusion, transuranium elements represent a unique and complex area of study within chemistry and physics. Their discovery has had profound implications for science, technology, and society. As we continue to explore the potential of these elements, it is crucial to balance their benefits with the necessary precautions to ensure safety and sustainability. The ongoing research in this field promises to unveil further mysteries of the atomic world, highlighting the importance of transuranium elements in our quest for knowledge and advancement.
化学和物理学领域广阔,涵盖了各种元素和化合物。在这些元素中,有一个引人入胜的类别被称为超铀元素,指的是原子序数大于铀的元素,特别是那些原子序数超过92的元素。这个群体包括镎、钚和锕等元素,这些元素在自然界中不存在,必须在实验室中合成。对超铀元素的研究对于核能、医学治疗和科学研究等各种应用至关重要。 历史上,超铀元素的发现始于20世纪初。像埃德温·麦克米兰和格伦·T·西博格这样的科学家在识别这些元素方面发挥了关键作用。他们的工作不仅扩展了元素周期表,还为核物理学的研究和发展开辟了新的途径。例如,钚作为最著名的超铀元素之一,成为核武器和反应堆发展的关键组成部分。这些超铀元素的双重用途特性引发了科学界和政治界对伦理和安全问题的持续讨论。 除了历史意义外,超铀元素还有实际应用,使社会受益。例如,镅-241广泛用于烟雾探测器,为家庭和建筑物提供可靠的火灾检测手段。此外,某些超铀元素同位素用于癌症治疗中的放射疗法,展示了它们对人类健康的积极影响潜力。 尽管有其好处,但处理和处置超铀元素带来了重大挑战。这些元素通常是放射性的,对人类健康和环境构成风险。因此,在处理它们时,严格的安全协议是必不可少的。研究人员不断探索减轻与超铀元素废物相关风险的方法,包括先进的封存策略和回收技术。 此外,对超铀元素的研究有助于我们理解基本物理学。通过研究它们的属性和行为,科学家可以获得关于原子相互作用和物质稳定性所支配的力量的见解。这项研究不仅增强了我们对宇宙的知识,还推动了各种技术领域的创新。 总之,超铀元素代表了化学和物理学中一个独特而复杂的研究领域。它们的发现对科学、技术和社会产生了深远的影响。随着我们继续探索这些元素的潜力,平衡其益处与确保安全和可持续性所需的预防措施至关重要。该领域的持续研究承诺揭示原子世界的进一步奥秘,突显了超铀元素在我们追求知识和进步中的重要性。
文章标题:transuranium的意思是什么
文章链接:https://www.liuxue886.cn/danci/268493.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论