autosomes
简明释义
n. [遗]常染色体(autosome 的复数)
英英释义
Autosomes are any chromosomes that are not sex chromosomes; they are involved in determining the somatic traits of an organism. | 常染色体是指任何非性染色体的染色体;它们参与决定生物体的体征。 |
单词用法
一对常染色体 | |
常染色体遗传 | |
常染色体显性 | |
常染色体隐性 |
同义词
非性染色体 | Autosomes are responsible for most of the body's genetic traits. | 常染色体负责大多数身体的遗传特征。 | |
体细胞染色体 | In humans, there are 22 pairs of autosomes and one pair of sex chromosomes. | 在人类中,有22对常染色体和一对性染色体。 |
反义词
性染色体 | Humans have 22 pairs of autosomes and one pair of sex chromosomes. | 人类有22对常染色体和一对性染色体。 |
例句
1.In female individuals a late replicating X chromosome which genetically was inactive slightly stained and could be discriminated from the autosomes and other X chromosome.
在雌性个体中,遗传功能失活的晚复制x染色体淡染色,可以和常染色体以及另一条X染色体鉴别。
2.In female individuals a late replicating X chromosome which genetically was inactive slightly stained and could be discriminated from the autosomes and other X chromosome.
在雌性个体中,遗传功能失活的晚复制x染色体淡染色,可以和常染色体以及另一条X染色体鉴别。
3.Humans have 22 pairs of autosomes (常染色体) and one pair of sex chromosomes.
人类有22对autosomes(常染色体)和一对性染色体。
4.Genetic disorders can be caused by mutations in the autosomes (常染色体).
遗传疾病可能是由autosomes(常染色体)中的突变引起的。
5.During meiosis, autosomes (常染色体) segregate independently.
在减数分裂过程中,autosomes(常染色体)独立分离。
6.The study of autosomes (常染色体) is crucial for understanding human genetics.
研究autosomes(常染色体)对于理解人类遗传学至关重要。
7.Some traits are linked to specific autosomes (常染色体) rather than sex chromosomes.
某些性状与特定的autosomes(常染色体)相关,而不是性染色体。
作文
In the study of genetics, understanding the structure and function of chromosomes is crucial. Among the total number of chromosomes in human cells, there are two main categories: autosomes and sex chromosomes. The term autosomes refers to the 22 pairs of chromosomes that are not directly involved in determining the sex of an individual. These autosomes contain the majority of an individual's genetic information, influencing various traits such as hair color, eye color, and even susceptibility to certain diseases. The significance of autosomes in heredity cannot be overstated. Each parent contributes one chromosome from each pair of autosomes, which means that a child inherits a combination of genetic traits from both mother and father. This process of inheritance explains why siblings can have similar yet distinct physical characteristics. For instance, one sibling may inherit genes for brown eyes from their mother while another may inherit blue eyes from their father. Moreover, studying autosomes is essential for understanding genetic disorders. Many genetic conditions arise from mutations on autosomes. For example, conditions like cystic fibrosis and sickle cell anemia are caused by specific mutations located on these chromosomes. Geneticists often analyze the autosomes to identify these mutations, which can lead to better diagnosis and treatment options. In recent years, advancements in technology have allowed for more detailed study of autosomes. Techniques such as whole-genome sequencing enable researchers to examine the entire set of autosomes and identify potential genetic variations that may contribute to diseases. This has opened up new avenues for personalized medicine, where treatments can be tailored based on an individual's unique genetic makeup. Furthermore, autosomes play a vital role in evolutionary biology. By comparing the autosomes of different species, scientists can trace the evolutionary history and relationships among organisms. This comparative analysis helps to understand how certain traits have evolved over time and how species adapt to their environments. In conclusion, autosomes are fundamental components of our genetic architecture. They carry the majority of our hereditary information and are instrumental in determining various physical and biological traits. Understanding autosomes is essential not only for the study of genetics but also for medical research and evolutionary biology. As science continues to advance, the exploration of autosomes will undoubtedly lead to new discoveries that enhance our understanding of life itself.
在遗传学研究中,理解染色体的结构和功能至关重要。在人类细胞的总染色体中,有两个主要类别:常染色体和性染色体。术语常染色体指的是22对不直接参与决定个体性别的染色体。这些常染色体包含了个体大部分的遗传信息,影响诸如发色、眼色甚至某些疾病的易感性等各种特征。 常染色体在遗传中的重要性不容小觑。每位父母从每对常染色体中各贡献一条染色体,这意味着孩子从母亲和父亲那里继承了一组合成的遗传特征。这种遗传过程解释了为什么兄弟姐妹可以有相似而又独特的身体特征。例如,一个兄弟姐妹可能从母亲那里继承了棕色眼睛的基因,而另一个则可能从父亲那里继承了蓝色眼睛。 此外,研究常染色体对于理解遗传病至关重要。许多遗传疾病是由常染色体上的突变引起的。例如,囊性纤维化和镰状细胞贫血等疾病就是由位于这些染色体上的特定突变造成的。遗传学家经常分析常染色体以识别这些突变,从而导致更好的诊断和治疗方案。 近年来,技术的进步使得对常染色体的更详细研究成为可能。全基因组测序等技术使研究人员能够检查整套常染色体并识别可能导致疾病的遗传变异。这为个性化医学开辟了新的途径,治疗方案可以根据个体独特的遗传构成进行调整。 此外,常染色体在进化生物学中也扮演着重要角色。通过比较不同物种的常染色体,科学家们可以追踪生物的进化历史和物种之间的关系。这种比较分析有助于理解某些特征是如何随时间演变的,以及物种如何适应其环境。 总之,常染色体是我们遗传结构的基本组成部分。它们携带大部分的遗传信息,并且在决定各种身体和生物特征方面发挥着重要作用。理解常染色体不仅对遗传学研究至关重要,而且对医学研究和进化生物学也同样重要。随着科学的不断进步,对常染色体的探索无疑会带来新的发现,增强我们对生命本身的理解。
文章标题:autosomes的意思是什么
文章链接:https://www.liuxue886.cn/danci/286664.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论