autotrophy
简明释义
n. [生物] 自养;自养型
英英释义
Autotrophy is the nutritional mode of organisms that produce their own food from inorganic substances using light or chemical energy. | 自养是指生物通过光能或化学能从无机物质中合成自身食物的营养模式。 |
单词用法
同义词
反义词
异养 | Heterotrophic organisms rely on consuming other organisms for energy. | 异养生物依赖于消耗其他生物来获取能量。 | |
腐生 | Saprotrophic fungi play a crucial role in decomposing organic matter. | 腐生真菌在分解有机物方面发挥着重要作用。 |
例句
1.Nitrifying bacteria have the properties of obligate autotrophy and slow growth. And it's the rate limiting component in circulation of Nitrogen.
硝化细菌具有专性自养及生长缓慢等特性,是水体氮循环过程中的限速环节。
2.Nitrifying bacteria have the properties of obligate autotrophy and slow growth. And it's the rate limiting component in circulation of Nitrogen.
硝化细菌具有专性自养及生长缓慢等特性,是水体氮循环过程中的限速环节。
3.Plants exhibit autotrophy by converting sunlight into energy through photosynthesis.
植物通过光合作用表现出自养,将阳光转化为能量。
4.The study of autotrophy is essential for understanding ecosystems and food chains.
研究自养对于理解生态系统和食物链至关重要。
5.Certain bacteria are known for their autotrophy, using inorganic substances to synthesize organic compounds.
某些细菌以其自养而闻名,利用无机物合成有机化合物。
6.In a classroom experiment, students observed autotrophy in action by growing plants under different light conditions.
在课堂实验中,学生们通过在不同光照条件下种植植物观察到自养的过程。
7.The concept of autotrophy contrasts with heterotrophy, where organisms rely on consuming other organisms for energy.
概念上,自养与异养相对,后者是指生物依赖摄取其他生物获取能量。
作文
In the realm of biology, one of the most fascinating concepts is that of autotrophy. This term refers to the ability of certain organisms to produce their own food from inorganic substances, using light or chemical energy. Organisms that exhibit this remarkable trait are known as autotrophs, and they play a crucial role in the ecosystem. Understanding autotrophy not only enhances our knowledge of life forms on Earth but also emphasizes the interconnectedness of various biological processes. Autotrophs can be broadly categorized into two types: photoautotrophs and chemoautotrophs. Photoautotrophs, such as plants, algae, and some bacteria, harness sunlight to convert carbon dioxide and water into glucose through the process of photosynthesis. This process not only provides energy for the autotrophs themselves but also produces oxygen as a byproduct, which is essential for the survival of aerobic organisms, including humans. On the other hand, chemoautotrophs derive energy from chemical reactions involving inorganic compounds. These organisms, often found in extreme environments such as hydrothermal vents, utilize substances like hydrogen sulfide or ammonia to synthesize organic molecules. The discovery of chemoautotrophs has expanded our understanding of life, demonstrating that organisms can thrive in conditions previously thought to be inhospitable. The significance of autotrophy extends beyond individual organisms; it is foundational to the structure of food webs. Autotrophs serve as primary producers, forming the base of the food chain. Herbivores, or primary consumers, rely on these producers for energy, while carnivores and omnivores depend on herbivores and other animals for sustenance. In this way, autotrophy supports the flow of energy through ecosystems and maintains ecological balance. Moreover, the study of autotrophy has implications for agriculture and environmental sustainability. By understanding how plants and other autotrophs grow and thrive, scientists can develop better agricultural practices that promote sustainable food production. Techniques such as crop rotation, permaculture, and organic farming all leverage principles of autotrophy to enhance soil health and increase crop yields without depleting natural resources. Additionally, the exploration of autotrophic processes has led to innovative solutions for addressing climate change. Researchers are investigating ways to enhance the natural abilities of autotrophs to sequester carbon dioxide from the atmosphere. For instance, cultivating specific types of algae that efficiently absorb CO2 could contribute to reducing greenhouse gas levels and mitigating global warming. In conclusion, autotrophy is a fundamental biological process that underpins life on Earth. By allowing organisms to produce their own food, it facilitates energy transfer within ecosystems and supports biodiversity. As we face environmental challenges, understanding and harnessing the power of autotrophy will be critical in promoting sustainability and ensuring the health of our planet for future generations. Embracing the principles of autotrophy not only enriches our scientific understanding but also inspires us to cultivate a more harmonious relationship with nature.
在生物学领域,最引人入胜的概念之一是自养。这个术语指的是某些生物体能够利用无机物质,通过光能或化学能来生产自身所需食物的能力。表现出这一显著特征的生物称为自养生物,它们在生态系统中扮演着至关重要的角色。理解自养不仅增强了我们对地球上生命形式的认识,还强调了各种生物过程之间的相互联系。 自养生物可以大致分为两类:光自养生物和化自养生物。光自养生物,如植物、藻类和某些细菌,利用阳光将二氧化碳和水转化为葡萄糖,这一过程被称为光合作用。这个过程不仅为自养生物自身提供能量,还产生氧气作为副产品,而氧气对包括人类在内的有氧生物的生存至关重要。 另一方面,化自养生物通过涉及无机化合物的化学反应获得能量。这些生物通常在极端环境中发现,如热液喷口,利用硫化氢或氨等物质合成有机分子。化自养生物的发现扩展了我们对生命的理解,表明生物体可以在以前认为不适宜的条件下生存。 自养的重要性不仅限于个体生物;它是食物网结构的基础。自养生物作为初级生产者,形成了食物链的基础。食草动物或初级消费者依赖这些生产者获取能量,而食肉动物和杂食动物则依赖食草动物和其他动物获取营养。通过这种方式,自养支持了生态系统中的能量流动,并维持生态平衡。 此外,研究自养对农业和环境可持续性也具有重要意义。通过了解植物和其他自养生物如何生长和繁荣,科学家可以开发出更好的农业实践,以促进可持续的食品生产。轮作、永续农业和有机农业等技术都利用了自养的原则,以增强土壤健康并在不耗竭自然资源的情况下提高作物产量。 此外,自养过程的探索还导致了应对气候变化的创新解决方案。研究人员正在调查如何增强自养生物自然吸收二氧化碳的能力。例如,培养特定类型的藻类以高效吸收二氧化碳,可能有助于减少温室气体水平,从而缓解全球变暖。 总之,自养是一个基础的生物过程,支撑着地球上的生命。通过使生物体能够生产自身食物,它促进了生态系统内的能量转移,并支持了生物多样性。在面临环境挑战时,理解和利用自养的力量对于促进可持续发展和确保我们星球的健康至关重要。接受自养的原则不仅丰富了我们的科学理解,还激励我们与自然建立更加和谐的关系。
文章标题:autotrophy的意思是什么
文章链接:https://www.liuxue886.cn/danci/286710.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论