axes
简明释义
n. 轴线;轴心;坐标轴(axis 的复数);斧头(axe 的复数)
英英释义
单词用法
[物]主轴 | |
中心轴;中央轴 |
同义词
轴 | 这个图表有两个轴:x轴和y轴。 |
反义词
点 | 图上的点表示特定的值。 | ||
中心 | 这些圆的中心彼此等距。 |
例句
1.They used axes to clear a path through the forest.
他们用斧子开辟出一条穿过森林的小道。
2.'Talking of axes,' said the Duchess, 'chop off her head!'
“说什么?”公爵夫人说,“把她的头砍掉!”
3.x=array So for example, when I say x-axes equals array.
比方说当我让。
4.Two axes, one for importance, the other for urgency, intersect.
两个轴,一个代表重要性,一个代表紧急程度,二者相交。
5.To refresh the display, click the Reset Axes button.
若要刷新显示,请单击ResetAxes按钮。
6.SCA provides composition on two axes: composition by reference and composition by implementation.
SCA在两个坐标轴上提供组合:引用组合与实现组合。
7.Millions of hectares of forest and woodland fell before the newcomers' axes between 1850 and 1890, as intensive European farming methods expanded across the world.
1850年至1890年间,随着欧洲集约化农业方法在世界范围内的推广,数百万公顷的森林和林地被砍伐殆尽。
8.If plotted on the same set of axes, the amplitude curve would be barely visible.
如果对轴的相同集合绘图,振幅曲线几乎看不出来。
9.These three axes also defined work in the Middle Ages, the classical world, and even earlier.
这三个轴在中世纪或是更早就在工作中被定义过了。
10.The carpenter used his axes to shape the wood into a beautiful table.
木匠用他的斧头把木头雕刻成一张漂亮的桌子。
11.In geometry class, we learned about the x and y axes on a graph.
在几何课上,我们学习了图表上的x和y轴。
12.He swung the axes with great strength to chop down the tree.
他用力挥动斧头砍倒了那棵树。
13.The two axes of the graph represent different variables in the experiment.
图表的两个轴代表实验中的不同变量。
14.She has a collection of vintage axes displayed in her living room.
她在客厅里展示了一系列复古的斧头。
作文
In the realm of mathematics and science, the concept of axes (坐标轴) plays a crucial role in understanding graphs and geometric shapes. The term axes refers to the plural form of axis, which is an imaginary line that serves as a reference point for measuring or plotting points in a two-dimensional or three-dimensional space. Typically, in a Cartesian coordinate system, we encounter two main axes: the x-axis (横坐标轴) and the y-axis (纵坐标轴). These axes intersect at a point known as the origin, which has coordinates (0,0). This intersection allows us to define the position of points in relation to one another. Understanding how to use axes is fundamental for students learning algebra and geometry. For instance, when graphing a linear equation, such as y = 2x + 3, students must plot points based on the values of x and y, which are determined by the intersection of the axes. By drawing a straight line through these points, they can visualize the relationship between the variables. This exercise not only helps in comprehending linear functions but also lays the groundwork for more advanced topics such as calculus and statistics. Moreover, the concept of axes extends beyond mathematics into various fields such as physics and engineering. In physics, axes are often used to analyze forces acting on an object. For example, when studying motion, we might consider the x-axis as representing horizontal movement and the y-axis as representing vertical movement. By breaking down complex motions into components along these axes, physicists can apply Newton's laws of motion more effectively. In engineering, the idea of axes is vital when designing mechanical systems. Engineers often refer to rotational axes when discussing gears, levers, and other machinery. Understanding how different parts rotate around certain axes is essential for ensuring that machines function properly and efficiently. This knowledge is crucial for avoiding mechanical failures and optimizing performance. The importance of axes is also evident in data visualization. In statistics, data is frequently represented on graphs where the x-axis might represent time, and the y-axis represents a variable such as sales or temperature. By analyzing trends on these axes, researchers can draw conclusions about patterns and make predictions based on historical data. This graphical representation is not only easier to understand than raw numbers but also allows for quick comparisons between different datasets. In conclusion, the concept of axes (坐标轴) is integral to various disciplines, including mathematics, physics, engineering, and statistics. Mastery of how to interpret and utilize axes allows students and professionals alike to analyze data, understand relationships between variables, and solve complex problems. As we continue to advance in technology and science, the significance of axes will undoubtedly remain a foundational element in our quest for knowledge and innovation.
在数学和科学领域,axes(坐标轴)的概念在理解图形和几何形状方面发挥着关键作用。axes一词是axis的复数形式,它是一个虚拟的线,用作测量或绘制二维或三维空间中点的参考点。通常,在笛卡尔坐标系中,我们会遇到两个主要的axes:x轴(横坐标轴)和y轴(纵坐标轴)。这些axes在称为原点的点相交,原点的坐标为(0,0)。这种交点使我们能够根据彼此之间的关系定义点的位置。 理解如何使用axes对于学习代数和几何的学生来说是基础。例如,当绘制线性方程时,如y = 2x + 3,学生必须根据x和y的值绘制点,这些值由axes的交点决定。通过将这些点连接成一条直线,他们可以可视化变量之间的关系。这种练习不仅有助于理解线性函数,而且为更高级的话题如微积分和统计学打下基础。 此外,axes的概念超越了数学,延伸到物理学和工程等多个领域。在物理学中,axes常用于分析作用在物体上的力。例如,在研究运动时,我们可能考虑x轴代表水平运动,y轴代表垂直运动。通过将复杂的运动分解为沿这些axes的分量,物理学家可以更有效地应用牛顿运动定律。 在工程中,axes的概念在机械系统的设计中至关重要。工程师在讨论齿轮、杠杆和其他机械时,通常会提到旋转axes。理解不同部件围绕某些axes旋转的方式对于确保机器正常高效地运转至关重要。这种知识对于避免机械故障和优化性能是至关重要的。 axes的重要性在数据可视化中也显而易见。在统计学中,数据通常在图表上表示,其中x轴可能代表时间,而y轴代表销售或温度等变量。通过分析这些axes上的趋势,研究人员可以得出关于模式的结论,并根据历史数据做出预测。这种图形表示不仅比原始数字更易于理解,而且还允许快速比较不同的数据集。 总之,axes(坐标轴)的概念在数学、物理、工程和统计等多个学科中都是不可或缺的。掌握如何解释和利用axes使学生和专业人士能够分析数据、理解变量之间的关系并解决复杂问题。随着我们在技术和科学上的不断进步,axes的重要性无疑将继续作为我们追求知识和创新的基础元素。
文章标题:axes的意思是什么
文章链接:https://www.liuxue886.cn/danci/287248.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论