axiom
简明释义
n. [数] 公理;格言;自明之理
复 数 a x i o m s
英英释义
单词用法
不言而喻的公理 | |
基本公理 | |
选择公理 | |
接受一个公理 | |
从公理推导 | |
陈述一个公理 |
同义词
原则 | 平等原则在司法中是根本的。 | ||
公设 | 在几何学中,公设是被接受而无需证明的。 | ||
前提 | The premise of the argument is that all men are created equal. | 论点的前提是所有人都是平等创造的。 | |
定理 | 这个定理是基于几个公理证明的。 | ||
格言 | 一个格言是'诚实是最好的政策。' |
反义词
理论 | The theory of relativity changed our understanding of time and space. | 相对论理论改变了我们对时间和空间的理解。 | |
假设 | 她的假设通过几次实验进行了测试。 |
例句
1.In our own entangled era, his axiom stretches to the whole market.
真是一语成谶,只不过在关联时代,失去信用的是整个市场。
2.Get more information and try AXIOM for yourself by downloading it at the Apache AXIOM Project.
获得更多的信息,并在ApacheAXIOMProject下载和尝试使用AXIOM。
3.AXIOM provides all this while it makes the resulting complexity transparent to the user.
AXIOM提供了所有这些特性,同时幕后的复杂性对用户是透明的。
4.New XML Object Model (AXIOM).
新xml对象模型(AXIOM)。
5.We should explore the relation between the Martin Axiom and Continuum Hypothesis.
我们应该探讨马丁公理和连续统假设之间的关系。
6.Here again, AXIOM seems to do an especially poor job with small documents.
同样的,AXIOM对于较小的文档尤其糟糕。
7.The recession was good to Axiom.
经济衰退对Axiom来说是件好事。
8.AXIOM is built around the StAX pull parser interface.
AXIOM构建于stax拉式解析器接口的基础之上。
9.It's a definition. It's an axiom.
是一个定义,是一个原理。
10.In mathematics, the statement 'a = a' is often considered an axiom 公理 that establishes the foundation for equality.
在数学中,'a = a' 这个陈述通常被视为一个 axiom 公理,它建立了平等的基础。
11.One axiom 公理 of economics is that people act in their own self-interest.
经济学的一个 axiom 公理 是人们会出于自身利益而行动。
12.The principle that all humans are created equal is an axiom 公理 in many democratic societies.
所有人类生而平等的原则是许多民主社会中的一个 axiom 公理。
13.In philosophy, the idea that knowledge is power can be seen as an axiom 公理 for personal development.
在哲学中,知识就是力量的观点可以被视为个人发展的一个 axiom 公理。
14.The axiom 公理 of supply and demand is fundamental to market economics.
供求法则的 axiom 公理 是市场经济的基础。
作文
In the realm of mathematics and logic, an axiom (公理) serves as a fundamental building block. It is a statement or proposition that is regarded as being self-evidently true, and it does not require any proof. The significance of axioms (公理) cannot be overstated, as they form the foundation upon which entire theories and systems are built. For instance, Euclidean geometry is based on several axioms (公理) that define the relationships between points, lines, and planes. These basic truths allow mathematicians to derive further theorems and propositions. However, the concept of axioms (公理) extends beyond mathematics into various fields such as philosophy, science, and even everyday reasoning. In philosophy, certain axioms (公理) are accepted as starting points for ethical theories. For example, the belief that "all humans have equal worth" can be considered an axiom (公理) in discussions about human rights. This foundational belief influences laws, social policies, and individual behaviors, showcasing how axioms (公理) can shape societal structures. In scientific inquiry, axioms (公理) also play a crucial role. The scientific method relies on certain assumptions, such as the consistency of natural laws and the reliability of observation. These axioms (公理) allow scientists to formulate hypotheses and conduct experiments. Without these foundational principles, the pursuit of knowledge would be chaotic and unfocused. Moreover, in our daily lives, we often operate based on unspoken axioms (公理). For instance, the belief that hard work leads to success can be considered an axiom (公理) that motivates individuals to strive for their goals. Similarly, the idea that trust is essential for relationships can also be seen as an axiom (公理) that guides interpersonal interactions. These everyday axioms (公理) influence our decisions and behaviors, often without us realizing it. The beauty of axioms (公理) lies in their universality and simplicity. They are often so fundamental that they go unquestioned, yet they provide the necessary framework for complex thoughts and actions. In education, teaching students to recognize and critically evaluate axioms (公理) can enhance their analytical skills. By understanding the underlying principles that guide various disciplines, students can better appreciate the interconnectedness of knowledge. In conclusion, axioms (公理) are essential components of reasoning across different domains. Whether in mathematics, philosophy, science, or daily life, they provide the foundational truths that help us navigate the complexities of the world. Recognizing and reflecting on these axioms (公理) can lead to deeper insights and a more profound understanding of both abstract concepts and practical situations. As we continue to explore and question the axioms (公理) that underpin our beliefs and actions, we open ourselves to new possibilities and perspectives.
在数学和逻辑的领域中,axiom(公理)作为一个基本的构建块。它是一个被认为自明的陈述或命题,不需要任何证明。axioms(公理)的重要性不容小觑,因为它们构成了整个理论和系统的基础。例如,欧几里得几何学基于几个定义点、线和平面之间关系的axioms(公理)。这些基本真理使数学家能够推导出进一步的定理和命题。 然而,axioms(公理)的概念不仅限于数学,还扩展到哲学、科学,甚至日常推理等各个领域。在哲学中,某些axioms(公理)被接受为伦理理论的起点。例如,“所有人类具有平等的价值”这一信念可以被视为讨论人权时的一个axiom(公理)。这一基础信念影响法律、社会政策和个人行为,展示了axioms(公理)如何塑造社会结构。 在科学研究中,axioms(公理)同样发挥着至关重要的作用。科学方法依赖于某些假设,如自然法则的一致性和观察的可靠性。这些axioms(公理)允许科学家制定假设并进行实验。如果没有这些基础原则,知识的追求将是混乱和无序的。 此外,在我们的日常生活中,我们往往基于未言明的axioms(公理)运作。例如,相信努力工作会导致成功的信念可以被视为一个推动个人努力实现目标的axiom(公理)。同样,信任对于人际关系至关重要的观念也可以看作是指导人际互动的一个axiom(公理)。这些日常axioms(公理)影响我们的决策和行为,往往在我们意识不到的情况下。 axioms(公理)的美在于它们的普遍性和简单性。它们通常是如此根本,以至于不被质疑,但它们为复杂的思想和行为提供了必要的框架。在教育中,教导学生识别和批判性地评估axioms(公理)可以增强他们的分析能力。通过理解指导各种学科的基本原则,学生可以更好地欣赏知识的相互联系。 总之,axioms(公理)是不同领域推理的重要组成部分。无论是在数学、哲学、科学还是日常生活中,它们提供了帮助我们驾驭世界复杂性的基础真理。认识和反思这些axioms(公理)可以带来更深刻的洞察力和对抽象概念及实际情况的更深理解。当我们继续探索和质疑支撑我们信念和行为的axioms(公理)时,我们为新的可能性和视角打开了大门。
文章标题:axiom的意思是什么
文章链接:https://www.liuxue886.cn/danci/287317.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论