butylation
简明释义
英[ˌbjuːtɪˈleɪʃən]美[ˌbjuːtɪˈleɪʃən]
n. 丁化作用
英英释义
The process of introducing a butyl group into a molecule, typically through chemical reactions. | 将丁基引入分子的过程,通常通过化学反应实现。 |
单词用法
同义词
反义词
去丁基化 | The process of debutylation is essential for the detoxification of certain compounds. | 去丁基化过程对于某些化合物的解毒至关重要。 | |
去甲基化 | 去甲基化可能导致基因表达的变化。 |
例句
1.The addition of solvent with high dielectric-constant would retard catechol tert-butylation.
反应体系中加入高介电常数的溶剂不利于邻苯二酚的叔丁基化。
2.The addition of solvent with high dielectric-constant would retard catechol tert-butylation.
反应体系中加入高介电常数的溶剂不利于邻苯二酚的叔丁基化。
3.The process of butylation is crucial in modifying the chemical properties of certain polymers.
丁基化的过程在改变某些聚合物的化学性质中至关重要。
4.Researchers found that butylation could enhance the stability of the drug formulation.
研究人员发现,丁基化可以增强药物制剂的稳定性。
5.In this experiment, we will perform butylation to improve the solubility of the compound.
在这个实验中,我们将进行丁基化以改善化合物的溶解度。
6.The butylation of phenolic compounds can lead to more effective antioxidants.
酚类化合物的丁基化可以导致更有效的抗氧化剂。
7.Understanding the mechanism of butylation helps in designing better materials.
理解丁基化的机制有助于设计更好的材料。
作文
In the field of organic chemistry, various reactions and modifications are employed to enhance the properties of compounds. One such reaction is known as butylation, which involves the introduction of a butyl group into a molecule. This process is significant because it can alter the solubility, reactivity, and overall characteristics of the compound. The term butylation refers specifically to the chemical reaction that adds a butyl group, which is a four-carbon alkyl chain, to an organic molecule. Understanding this reaction is crucial for chemists who aim to synthesize new materials or improve existing ones. The butyl group itself can be derived from butane, a simple hydrocarbon, and is often used in various applications. By adding a butyl group through butylation, chemists can modify the physical properties of a substance, making it more suitable for specific applications. For instance, the addition of a butyl group can increase the hydrophobic nature of a molecule, which is beneficial in creating water-repellent coatings or materials. One of the primary methods of achieving butylation is through nucleophilic substitution reactions. In these reactions, a nucleophile attacks the electrophilic carbon atom of a substrate, resulting in the replacement of a leaving group with a butyl group. This type of reaction is commonly used in the synthesis of pharmaceuticals, agrochemicals, and polymers. By employing butylation, chemists can create compounds that have improved biological activity or enhanced stability. Moreover, butylation plays a vital role in the production of certain plastics and rubbers. For example, the incorporation of butyl groups in polymers can lead to materials with desirable mechanical properties and resistance to environmental factors. This is particularly important in industries such as automotive and construction, where durable and long-lasting materials are essential. In addition to its practical applications, butylation is also a subject of research in the field of medicinal chemistry. Scientists are continually exploring how the modification of drug molecules through butylation can influence their pharmacokinetics and pharmacodynamics. By understanding how the butyl group affects the behavior of drugs in the body, researchers can design more effective therapeutic agents with fewer side effects. In conclusion, butylation is a significant chemical reaction that has far-reaching implications in various fields, including materials science, pharmaceuticals, and organic synthesis. By introducing a butyl group into a molecule, chemists can enhance its properties and tailor it for specific applications. The versatility of butylation makes it an invaluable tool in the arsenal of organic chemists, enabling them to innovate and develop new materials and compounds that meet the demands of modern technology and society. As research continues, the importance of butylation in advancing chemical science will undoubtedly grow, leading to exciting discoveries and advancements in multiple disciplines.
在有机化学领域,各种反应和修饰被用于增强化合物的性质。其中一种反应称为丁基化(butylation),它涉及将丁基引入分子中。这个过程是重要的,因为它可以改变化合物的溶解性、反应性和整体特性。术语丁基化(butylation)专门指代将丁基,即一个四碳烷基链,添加到有机分子的化学反应。理解这一反应对于那些希望合成新材料或改善现有材料的化学家至关重要。 丁基本身可以源自丁烷,一种简单的烃,通常用于各种应用。通过丁基化(butylation)添加丁基,化学家可以修饰物质的物理性质,使其更适合特定的应用。例如,添加丁基可以增加分子的疏水性,这在制造防水涂层或材料时是有益的。 实现丁基化(butylation)的主要方法之一是通过亲核取代反应。在这些反应中,亲核试剂攻击底物的电正碳原子,导致离去基团被丁基取代。这种类型的反应在制药、农用化学品和聚合物的合成中常见。通过采用丁基化(butylation),化学家可以创建具有改善生物活性或增强稳定性的化合物。 此外,丁基化(butylation)在某些塑料和橡胶的生产中也发挥着至关重要的作用。例如,在聚合物中加入丁基可以导致具有理想机械性能和抵抗环境因素的材料。这在汽车和建筑等行业尤为重要,这些行业需要耐用和持久的材料。 除了实际应用之外,丁基化(butylation)还是药物化学研究的主题。科学家们不断探索通过丁基化(butylation)修饰药物分子如何影响其药代动力学和药效学。通过了解丁基如何影响药物在体内的行为,研究人员可以设计出更有效的治疗剂,副作用更少。 总之,丁基化(butylation)是一种重要的化学反应,在材料科学、制药和有机合成等多个领域具有深远的影响。通过将丁基引入分子中,化学家可以增强其性质,并根据特定应用进行定制。丁基化(butylation)的多功能性使其成为有机化学家工具箱中无价的工具,使他们能够创新并开发出满足现代技术和社会需求的新材料和化合物。随着研究的持续,丁基化(butylation)在推动化学科学进步中的重要性无疑会不断增长,从而导致多个学科的激动人心的发现和进展。
文章标题:butylation的意思是什么
文章链接:https://www.liuxue886.cn/danci/301787.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论