cardinalate
简明释义
英[ˈkɑrdɪnəˌleɪt]美[ˈkɑrdɪnəˌleɪt]
n. 枢机主教的职位(或任期);红衣主教团;红衣主教
英英释义
To assign a cardinal number or to designate something as fundamental or primary. | 赋予一个基数或将某事物指定为基本或主要的。 |
单词用法
同义词
基数的 | 成功的基本原则是努力工作。 |
反义词
序数的 | The first item in the list is cardinal, while the second is ordinal. | 列表中的第一个项目是基数,而第二个是序数。 |
例句
1.The other is also the depression Yang of Shaoyin, but the emphasis was placed on the obstruction of cardinalate.
一虽亦认为是少阴阳郁,但重点是枢机不利。
2.The other is also the depression Yang of Shaoyin, but the emphasis was placed on the obstruction of cardinalate.
一虽亦认为是少阴阳郁,但重点是枢机不利。
3.The concept of cardinalate is crucial in understanding the hierarchy of mathematical theories.
理解数学理论的层次结构时,cardinalate 的概念至关重要。
4.In linguistics, we often use cardinalate numbers to express quantity.
在语言学中,我们常用 cardinalate 数字来表达数量。
5.The cardinalate principle of counting is foundational in early education.
计数的 cardinalate 原则是早期教育的基础。
6.When discussing statistics, we must consider the cardinalate values for accurate analysis.
在讨论统计时,我们必须考虑 cardinalate 值以进行准确分析。
7.In programming, using cardinalate functions can optimize performance.
在编程中,使用 cardinalate 函数可以优化性能。
作文
In the realm of mathematics and philosophy, the term cardinalate refers to the concept of cardinal numbers, which are used to denote quantity. Cardinal numbers are the numbers we use to count objects, such as one apple, two oranges, or three books. The importance of understanding cardinalate lies in its foundational role in various fields, including mathematics, computer science, and even everyday life. To grasp the significance of cardinalate, we must first explore what cardinal numbers represent. They are distinct from ordinal numbers, which indicate position or order. For instance, in a race, the first, second, and third places are determined by ordinal numbers. In contrast, if we simply want to know how many participants there are, we use cardinal numbers. This distinction is crucial when analyzing data or organizing information. In mathematics, the study of cardinality helps us understand different sizes of infinity. For example, the set of natural numbers has a different cardinality than the set of real numbers, despite both being infinite. This exploration of cardinalate opens up fascinating discussions about the nature of infinity and the hierarchy of sets. Moreover, in computer science, the principles of cardinalate are essential for algorithms that involve counting and sorting. When developing software, programmers often need to manage collections of data, and understanding how to categorize these collections using cardinal numbers can significantly affect the efficiency of their code. For instance, knowing the cardinality of a dataset can help in optimizing search algorithms or structuring databases effectively. Beyond the theoretical aspects, cardinalate also has practical implications in daily life. Consider a grocery store where customers need to keep track of items. Using cardinal numbers allows them to efficiently manage their shopping lists. Instead of thinking in terms of 'first item' or 'second item,' they can simply count how many of each item they need, making the shopping experience smoother and more effective. Additionally, educators emphasize the importance of teaching young children about cardinalate as they learn to count. Mastering cardinal numbers builds a strong foundation for future mathematical learning. Activities like counting blocks or toys reinforce this concept and make learning engaging. In conclusion, the term cardinalate encapsulates a fundamental concept that permeates various aspects of life, from academic disciplines to everyday activities. Understanding and applying cardinal numbers enhances our ability to quantify and analyze the world around us. Whether in mathematics, computer science, or simple daily tasks, the relevance of cardinalate cannot be overstated. As we continue to navigate an increasingly data-driven world, a solid grasp of cardinality will remain vital for effective communication, problem-solving, and decision-making. Therefore, embracing the concept of cardinalate is not merely an academic exercise; it is a necessary skill for success in numerous domains.
在数学和哲学领域,术语cardinalate指的是基数的概念,基数用于表示数量。基数是我们用来计数物体的数字,比如一个苹果、两个橙子或三本书。理解cardinalate的重要性在于它在数学、计算机科学甚至日常生活中的基础性作用。 要掌握cardinalate的重要性,我们必须首先探讨基数所代表的内容。它们与序数不同,后者表示位置或顺序。例如,在比赛中,第一、第二和第三名是由序数决定的。相反,如果我们只是想知道有多少参与者,我们就使用基数。这种区别在分析数据或组织信息时至关重要。 在数学中,基数的研究帮助我们理解不同大小的无穷大。例如,自然数集合的基数与实数集合的基数不同,尽管两者都是无限的。对cardinalate的探索开启了关于无穷大本质和集合层次结构的迷人讨论。 此外,在计算机科学中,cardinalate的原理对于涉及计数和排序的算法至关重要。在开发软件时,程序员通常需要管理数据集合,理解如何使用基数对这些集合进行分类可以显著影响代码的效率。例如,知道数据集的基数可以帮助优化搜索算法或有效地构建数据库。 除了理论方面,cardinalate在日常生活中也具有实际意义。考虑一个杂货店,顾客需要跟踪商品。使用基数使他们能够有效地管理购物清单。顾客不再考虑“第一个物品”或“第二个物品”,而是简单地计算每种物品的数量,使购物体验更加顺畅和高效。 此外,教育工作者强调教导幼儿关于cardinalate的重要性,因为他们学习计数。掌握基数为未来的数学学习奠定了坚实的基础。通过计数积木或玩具等活动来强化这一概念,使学习变得生动有趣。 总之,术语cardinalate概括了一个根本的概念,这一概念渗透到生活的各个方面,从学术学科到日常活动。理解和应用基数增强了我们量化和分析周围世界的能力。无论是在数学、计算机科学还是简单的日常任务中,cardinalate的相关性都不容小觑。随着我们继续在一个越来越依赖数据的世界中导航,扎实掌握基数将对有效沟通、解决问题和决策至关重要。因此,接受cardinalate的概念不仅仅是一个学术练习;它是成功的必要技能,适用于众多领域。
文章标题:cardinalate的意思是什么
文章链接:https://www.liuxue886.cn/danci/304846.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论