cavitation
简明释义
英[ˌkævɪˈteɪʃən]美[ˌkævəˈteɪʃən]
n. [流] 气穴现象;空穴作用;成穴
英英释义
单词用法
空蚀;气蚀;空隙腐蚀 | |
空泡腐蚀;气蚀损伤;涡蚀损伤;穴蚀损坏 |
同义词
蒸发 | The process of vaporization can lead to cavitation in pumps. | 蒸发过程可能导致泵中的气蚀。 | |
沸腾 | 沸腾的水会产生气泡,表明出现了气蚀。 | ||
气泡形成 | Bubble formation in a liquid can result in damage due to cavitation. | 液体中的气泡形成可能导致因气蚀而造成的损害。 |
反义词
凝结 | 蒸汽的凝结形成水滴。 | ||
压缩 | 气体的压缩会增加它们的压力。 |
例句
1.Hydrodynamic cavitation as a tool to control macro - micro - and nano - properties of inorganic materials.
以液力气蚀作用调控无机材料之宏观、微观及纳米特性。
2.As for chemical reaction mechanism, unified explanation now is the act of ultrasound cavitation.
对于声化学反应机理,现在统一的解释就是超声的声空化作用。
3.The essential character of cavitation noise has been analysed.
本文分析了空化噪声的基本特性。
4.The gular diameter and inlet angle and outlet angle of the Venturis have an important influence upon hydrodynamic cavitation.
文丘里管的喉部直径、入口锥角和出口锥角对空化效应有着重要的影响。
5.Test results show that this kind of throttle has stronger anti-cavitation ability than the one-step one of the same shape.
实验结果表明这种节流形式比相同形状的一级节流具有更强的抗气蚀性能。
6.The feedwater pumps are often faced with cavitation.
汽蚀是大型给水泵经常出现的问题。
7.This method is more suitable for pump cavitation performance curve fitting.
该方法较适合于泵汽蚀性能曲线的拟合。
8.The cavitation in the pump caused significant damage to its internal components.
泵中的气穴导致其内部组件严重损坏。
9.In underwater acoustics, cavitation bubbles can produce loud noises that disturb marine life.
在水下声学中,气穴气泡可以产生扰乱海洋生物的巨大噪音。
10.Engineers must consider cavitation when designing propellers for ships.
工程师在设计船舶螺旋桨时必须考虑气穴现象。
11.The phenomenon of cavitation can lead to increased wear on hydraulic systems.
气穴现象可能导致液压系统的磨损加剧。
12.During the experiment, we observed cavitation occurring at high fluid velocities.
在实验过程中,我们观察到在高流体速度下发生了气穴现象。
作文
Cavitation is a phenomenon that occurs when the pressure in a liquid drops below its vapor pressure, leading to the formation of small vapor-filled cavities or bubbles. These bubbles can form and collapse rapidly, creating shock waves and causing significant damage to nearby surfaces. Understanding cavitation is crucial in various fields, including engineering, marine technology, and even medicine. In engineering, cavitation is often observed in pumps, turbines, and propellers. When the pressure around these devices decreases too much, it can lead to the creation of cavitation bubbles. For instance, in a pump, if the inlet pressure is insufficient, the liquid may vaporize, forming bubbles. As these bubbles travel through the pump and enter areas of higher pressure, they collapse violently, producing shock waves that can erode the metal surfaces of the pump. This erosion can lead to reduced efficiency, increased maintenance costs, and ultimately, equipment failure. The impact of cavitation is not limited to mechanical systems. In marine technology, the performance of ship propellers can be significantly affected by cavitation. When a ship moves through water, the design of the propeller must ensure that it operates within a specific range of pressures to avoid cavitation. If cavitation occurs, it can lead to a loss of thrust and increased noise, which is detrimental not only to the vessel's performance but also to marine life due to the noise pollution generated. Moreover, cavitation is also relevant in medical applications, particularly in ultrasound therapies. High-intensity focused ultrasound (HIFU) utilizes the principles of cavitation to destroy tumors. When ultrasound waves pass through tissue, they can create localized areas of low pressure, leading to the formation of cavitation bubbles. The rapid collapse of these bubbles generates shock waves that can effectively disrupt cellular structures, allowing for targeted destruction of cancerous tissues while minimizing damage to surrounding healthy tissues. Despite its potential benefits, cavitation can also pose risks. In hydraulic systems, for example, cavitation can lead to instability and unpredictable behavior, which can compromise the safety of operations. Engineers must carefully design systems to manage pressure levels and prevent cavitation from occurring. In conclusion, cavitation is a complex phenomenon with both beneficial and detrimental effects across various fields. Whether in engineering applications where it can cause significant damage or in medical treatments where it can provide therapeutic effects, understanding the mechanisms behind cavitation is essential. Continued research and innovation are needed to harness the positive aspects of cavitation while mitigating its negative impacts. By doing so, we can improve the efficiency and safety of numerous technologies and potentially revolutionize treatment methods in medicine.
气蚀是指当液体中的压力降到其蒸汽压力以下时,导致小的充满蒸汽的腔体或气泡形成的现象。这些气泡可以迅速形成和崩溃,产生冲击波并对附近表面造成显著损害。理解气蚀在工程、海洋技术甚至医学等多个领域中至关重要。 在工程领域,气蚀通常出现在泵、涡轮机和螺旋桨中。当这些设备周围的压力下降过多时,就会导致气蚀气泡的形成。例如,在泵中,如果入口压力不足,液体可能会蒸发,从而形成气泡。当这些气泡穿过泵并进入更高压力的区域时,它们会猛烈崩溃,产生冲击波,这可能导致泵的金属表面被侵蚀。这种侵蚀可能导致效率降低、维护成本增加,并最终导致设备故障。 气蚀的影响不仅限于机械系统。在海洋技术中,船舶螺旋桨的性能可能会受到气蚀的显著影响。当船只在水中移动时,螺旋桨的设计必须确保在特定压力范围内运行,以避免气蚀的发生。如果发生气蚀,可能会导致推力丧失和噪音增加,这不仅对船只的性能有害,还会由于产生的噪声污染而对海洋生物造成危害。 此外,气蚀在医学应用中也具有相关性,特别是在超声治疗中。高强度聚焦超声(HIFU)利用气蚀的原理来破坏肿瘤。当超声波穿过组织时,可以创建局部低压区域,从而导致气蚀气泡的形成。这些气泡的快速崩溃会产生冲击波,有效地破坏细胞结构,允许针对性地摧毁癌变组织,同时尽量减少对周围健康组织的损害。 尽管有潜在的好处,气蚀也可能带来风险。在液压系统中,气蚀可能导致不稳定和不可预测的行为,从而危及操作的安全。工程师必须仔细设计系统以管理压力水平并防止气蚀的发生。 总之,气蚀是一种复杂的现象,在各个领域都有有益和有害的影响。无论是在可能造成重大损害的工程应用中,还是在能够提供治疗效果的医学治疗中,理解气蚀背后的机制至关重要。需要持续的研究和创新,以利用气蚀的积极方面,同时减轻其负面影响。通过这样做,我们可以提高众多技术的效率和安全性,并可能革新医学中的治疗方法。
文章标题:cavitation的意思是什么
文章链接:https://www.liuxue886.cn/danci/306912.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论