collinear
简明释义
adj. 共线的,同线的,在同一直线上的
英英释义
Collinear refers to points that lie on the same straight line. | 共线是指位于同一条直线上的点。 |
单词用法
与...共线 | |
是共线的 | |
三个共线点 | |
共线排列 | |
共线对齐 | |
共线配置 | |
一组共线点 | |
共线关系 |
同义词
线性的 | 这些点是线性的,形成一条直线。 | ||
对齐的 | 这两条线完美地对齐在同一方向上。 | ||
重合的 | The paths of the two objects are coincident at several points. | 这两个物体的路径在几个点上重合。 |
反义词
例句
1.The present paper focuses on the simple case of collinear microcracks, and quantifies the influence by the statistical distribution of crack lengths and ligament sizes.
本文研究简单的共线微裂纹构型,确定由于微裂纹长度和韧度尺寸的统计分布所产生的影响。
2.A point on one line, its corresponding point on the other line, and the center of perspectivity are collinear.
一条直线上的一个点,它在另一条直线上的对应点以及透视中心这三个点共线。
3.For collinear collision, the preceding collision velocity and post collision velocity are calculated on the basis of the impact locality and stop locality of collision vehicle.
对于二维碰撞,可以根据车辆的碰撞位置和停止位置,反推计算出车辆碰撞后的分离速度和碰撞前的接触速度。
4.The coaxial collinear printed dipole structure can be easily used to improve gain and form arrays with good coherence.
采用新型同轴直排印刷振子天线结构,易于提高增益和组阵,具有良好的一致性。
5.This paper introduces a kind of device that can transfer collinear telephones automatically.
本文介绍了一种同线电话自动转接装置。
6.The two-way cooling structure only brings little effects to joint cavities of accelerating tube and collinear load.
而分路冷却只会对加速段和同轴负载耦合处的腔体略有影响。
7.The coaxial collinear printed dipole structure used to improve gain and arrays with good coherence.
采用新型同轴直排印刷振子天线结构,易于提高增益和组阵,具有良好的一致性。
8.The three points A, B, and C are collinear, meaning they lie on the same straight line.
点A、B和C是共线的,意味着它们在同一条直线上。
9.In geometry, if two vectors are collinear, they point in the same direction or opposite directions.
在几何中,如果两个向量是共线的,它们指向相同的方向或相反的方向。
10.To determine if the points are collinear, you can calculate the slope between each pair of points.
要确定这些点是否是共线的,可以计算每对点之间的斜率。
11.The line segment connecting points D and E is collinear with the line segment from A to B.
连接点D和E的线段与从A到B的线段是共线的。
12.If the coordinates of the points satisfy the linear equation, then they are collinear.
如果这些点的坐标满足线性方程,那么它们是共线的。
作文
In the realm of geometry, the concept of collinear points is fundamental to understanding the relationships between different shapes and lines. The term collinear refers to points that lie on the same straight line. This simple yet profound idea has numerous applications in mathematics, physics, engineering, and computer graphics. To illustrate the significance of collinear points, let us consider a few examples. Imagine a straight road stretching out into the horizon. If you place several markers along this road, each marker represents a point. If all these markers are positioned so that they can be connected by a single straight line, we say that these markers are collinear. In mathematical terms, if you have three points A, B, and C, they are collinear if the slope between A and B is the same as the slope between B and C. This property can be visualized on a graph where the points share the same linear equation. Understanding collinear points is crucial in various fields. For instance, in physics, when analyzing forces acting on an object, it is essential to determine whether the forces are collinear or not. Forces that are collinear can be easily added together to find the resultant force, simplifying calculations and predictions about motion. In computer graphics, the concept of collinear points plays a vital role in rendering shapes and animations. When designing a graphic, ensuring that certain points are collinear can help maintain the integrity of the design. For example, when creating a straight edge or a line segment, the vertices of that segment must be collinear to ensure a smooth and accurate representation. Furthermore, in the field of data analysis, the idea of collinear points can be applied to understand relationships between variables. In statistics, collinearity refers to a situation where two or more predictor variables in a multiple regression model are highly correlated. This can lead to difficulties in estimating the relationship between the predictors and the outcome variable, making it essential for data analysts to identify collinear variables and address them appropriately. To summarize, the concept of collinear points is an essential part of geometry that extends far beyond the classroom. Whether in science, technology, or data analysis, recognizing and understanding collinear relationships can significantly enhance our ability to solve problems and create effective solutions. As we continue to explore the intricacies of mathematics and its applications, the importance of collinear points will undoubtedly remain a key focus, reminding us of the beauty and utility of straight lines in our world.
在几何学领域,collinear 点的概念对于理解不同形状和线条之间的关系至关重要。术语collinear指的是位于同一条直线上的点。这一简单而深刻的理念在数学、物理学、工程学和计算机图形学中有着众多应用。为了说明collinear 点的重要性,让我们考虑几个例子。 想象一条延伸到地平线的直路。如果你在这条路上放置几个标记,每个标记代表一个点。如果所有这些标记的位置可以通过一条直线连接,我们就说这些标记是collinear的。在数学术语中,如果你有三个点A、B和C,当A和B之间的斜率与B和C之间的斜率相同时,它们就是collinear的。这个性质可以在图表上可视化,其中这些点共享相同的线性方程。 理解collinear 点在各个领域都至关重要。例如,在物理学中,当分析作用于物体的力时,确定这些力是否是collinear的至关重要。Collinear的力可以很容易地相加以找到合力,从而简化运动的计算和预测。 在计算机图形学中,collinear 点的概念在渲染形状和动画中发挥着重要作用。在设计图形时,确保某些点是collinear的可以帮助保持设计的完整性。例如,在创建直边或线段时,该线段的顶点必须是collinear的,以确保平滑和准确的表示。 此外,在数据分析领域,collinear 点的概念可以应用于理解变量之间的关系。在统计学中,collinearity指的是在多重回归模型中两个或多个预测变量高度相关的情况。这可能导致估计预测变量与结果变量之间关系的困难,因此数据分析师必须识别collinear变量并适当地处理它们。 总之,collinear 点的概念是几何学中一个基本部分,远远超出了课堂的范畴。无论是在科学、技术还是数据分析中,识别和理解collinear关系都能显著增强我们解决问题和创造有效解决方案的能力。随着我们继续探索数学及其应用的复杂性,collinear 点的重要性无疑将始终是一个关键焦点,提醒我们直线在我们世界中的美丽和实用性。
文章标题:collinear的意思是什么
文章链接:https://www.liuxue886.cn/danci/315998.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论