decalescence
简明释义
英[ˌdiːkəˈlesəns]美[ˌdikəˈlesəns]
n. 吸热
英英释义
单词用法
去热点 | |
在去热过程中 | |
去热过程 | |
去热的特征 |
同义词
反义词
升温 | The calescence of the metal indicated that it was being heated. | 金属的升温表明它正在被加热。 | |
加热 | 加热材料将导致其经历升温过程。 |
例句
1.The users can adjust decalescence speed by their self according to their physical quality. The waistcoat can meet the demand of different constitution users.
利用者可以按照本身的身体本质本身调整背心的吸热速度,实现了对分歧体质的人群都可以或许知足利用要求。
2.The users can adjust decalescence speed by their self according to their physical quality. The waistcoat can meet the demand of different constitution users.
利用者可以按照本身的身体本质本身调整背心的吸热速度,实现了对分歧体质的人群都可以或许知足利用要求。
3.According to decalescence and discharge heat of phase change, single dimension passes heat theory model of phase change was created.
根据相变材料的吸热和放热特点,建立了相变材料的一维传热理论模型。
4.If only 6 mm thick glass through 50% of the blue solar radiation, tinted, glass can reveal decalescence through 25% of the sunlight.
如6毫米厚的蓝色玻璃只能透过50%的太阳辐射,茶色、古铜色吸热玻璃仅能透过25%的太阳光。
5.They also take effect in sterilization, decalescence, detumescence, softening skin and maintaining cell vitality.
他们还采取消毒效果,吸热、消肿、软化皮肤、保持细胞活力。
6.Along with the increase of decalescence of cooling medium, gas contents increases and degree of dry steam rises.
冷却介质主流发生相变的点称之为蒸发点,其后随着介质不断吸热,气态含量增多,蒸汽干度上升。
7.Modern technology developed decalescence glass.
现代科技研制出的吸热玻璃。
8.Adjustability of decalescence speed.
吸热速率可调。
9.The process of decalescence occurs when a material cools and transforms from a liquid to a solid state.
当材料冷却并从液态转变为固态时,发生脱冷过程。
10.In metallurgy, understanding decalescence is crucial for achieving the desired properties in steel.
在冶金学中,理解脱冷对获得钢材所需的特性至关重要。
11.During the cooling phase, the decalescence of the alloy can lead to structural changes.
在冷却阶段,合金的脱冷可能导致结构变化。
12.Engineers monitor decalescence closely to ensure the integrity of materials under high temperatures.
工程师密切监测脱冷以确保高温下材料的完整性。
13.The decalescence point can vary depending on the composition of the material.
根据材料的成分,脱冷点可能会有所不同。
作文
The process of transformation in materials, especially metals, is a fascinating subject that intertwines physics and engineering. One of the key phenomena observed in this context is known as decalescence, which refers to the transformation of a material from a higher temperature phase to a lower temperature phase upon cooling. This term is often used in metallurgy to describe the behavior of certain alloys as they undergo phase changes during heating and cooling cycles. Understanding decalescence is crucial for engineers and scientists who work with materials, as it influences the mechanical properties and structural integrity of components. When a metal is heated, it may reach a point where it transforms into a more malleable state, allowing for easier shaping and forming. However, as the metal cools, it can undergo decalescence, reverting to a more rigid structure. This transition can significantly impact the final properties of the material, such as its strength, ductility, and toughness. For instance, consider the process of forging steel. When steel is heated to a high temperature, it becomes soft and workable. As it is shaped and then cooled, decalescence occurs, and the steel hardens, acquiring the desired characteristics for its intended application. Engineers must carefully control the cooling rate to ensure that the material achieves optimal properties. If the cooling is too rapid, it may lead to undesirable stresses or even fractures due to the abrupt change in structure. Moreover, decalescence is not limited to metals alone; it can also be observed in other materials, including ceramics and polymers. The study of these transformations helps researchers develop new materials with tailored properties for specific applications. For example, in the field of ceramics, understanding the decalescence process can lead to the creation of more resilient tiles for aerospace applications, capable of withstanding extreme temperatures and pressures. In summary, decalescence plays a vital role in materials science, influencing how substances behave under varying thermal conditions. By grasping this concept, engineers can better predict how materials will perform in real-world applications, ensuring safety and reliability. As technology advances, the ability to manipulate decalescence will open new avenues for innovation, allowing for the development of materials that meet the ever-evolving demands of modern society. The exploration of decalescence not only enhances our understanding of material properties but also paves the way for breakthroughs in various industries, from construction to aerospace, ultimately contributing to the progress of technology and engineering.
材料,尤其是金属的转变过程是一个迷人的主题,它将物理学和工程学交织在一起。在这种背景下观察到的一个关键现象被称为decalescence,指的是材料在冷却时从高温相转变为低温相的过程。这个术语通常用于冶金学中,用来描述某些合金在加热和冷却周期中经历的相变行为。 理解decalescence对从事材料工作的工程师和科学家至关重要,因为它影响着组件的机械性能和结构完整性。当金属被加热时,它可能达到一个点,在这个点上它转变为一种更具延展性的状态,从而便于成型和加工。然而,随着金属的冷却,它可能会经历decalescence,恢复到一种更坚硬的结构。这种转变可以显著影响材料的最终特性,例如其强度、韧性和耐用性。 例如,考虑钢的锻造过程。当钢被加热到高温时,它变得柔软且易于加工。当它被塑形然后冷却时,decalescence发生,钢硬化,获得所需的特性以适应其预期的应用。工程师必须仔细控制冷却速度,以确保材料达到最佳性能。如果冷却过快,可能会由于结构的突然变化而导致不良的应力甚至断裂。 此外,decalescence不仅限于金属;在其他材料中也可以观察到,包括陶瓷和聚合物。对这些转变的研究帮助研究人员开发出具有特定应用所需的定制特性的材料。例如,在陶瓷领域,理解decalescence过程可以导致更耐用的航空航天应用瓷砖的创建,能够承受极端的温度和压力。 总之,decalescence在材料科学中扮演着重要角色,影响物质在不同热条件下的行为。通过掌握这一概念,工程师可以更好地预测材料在现实世界应用中的表现,从而确保安全性和可靠性。随着技术的进步,操控decalescence的能力将为创新开辟新的途径,使得开发出满足现代社会不断发展的需求的材料成为可能。对decalescence的探索不仅增强了我们对材料特性的理解,而且为各个行业的突破铺平了道路,从建筑到航空航天,最终促进了技术和工程的进步。
文章标题:decalescence的意思是什么
文章链接:https://www.liuxue886.cn/danci/330770.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论