dehydrogenize
简明释义
英[diːˈhɒdʒ.ə.raɪn.aɪz]美[diˌhɑːdʒəˈraɪnaɪz]
vt. 使脱氢
第 三 人 称 单 数 d e h y d r o g e n i z e s
现 在 分 词 d e h y d r o g e n i z i n g
过 去 式 d e h y d r o g e n i z e d
过 去 分 词 d e h y d r o g e n i z e d
英英释义
To remove hydrogen from a compound, typically resulting in the formation of a double bond or the production of a different compound. | 从化合物中去除氢,通常导致形成双键或产生不同的化合物。 |
单词用法
去氢化乙醇 | |
去氢化脂肪酸 | |
催化去氢化 | |
热去氢化 |
同义词
脱氢化 | 脱氢化醇的过程会生成醛。 | ||
氧化 | In organic chemistry, to oxidize a compound often involves removing hydrogen. | 在有机化学中,氧化一个化合物通常涉及去除氢。 |
反义词
例句
1.In the chemical process, we need to dehydrogenize the alcohol to produce aldehyde.
在这个化学过程中,我们需要脱氢酒精以生成醛。
2.The enzyme can dehydrogenize various substrates in metabolic pathways.
该酶可以在代谢途径中脱氢多种底物。
3.To create the desired compound, we must dehydrogenize the starting material under specific conditions.
为了创造所需的化合物,我们必须在特定条件下脱氢起始材料。
4.Researchers are studying how to efficiently dehydrogenize hydrocarbons for fuel production.
研究人员正在研究如何有效地脱氢烃类以生产燃料。
5.The catalytic process is designed to dehydrogenize alkanes into alkenes.
该催化过程旨在将烷烃脱氢为烯烃。
作文
In the realm of organic chemistry, various reactions play a crucial role in transforming simple molecules into more complex structures. One such reaction is the process to dehydrogenize, which involves the removal of hydrogen atoms from a molecule. This reaction is essential for many biochemical processes and industrial applications. Understanding how dehydrogenize functions can provide insights into both natural and synthetic pathways in chemistry. To begin with, the term dehydrogenize refers to the removal of hydrogen from a compound, typically resulting in the formation of a double bond or a more oxidized state of the molecule. For example, during cellular respiration, glucose undergoes a series of reactions where it is gradually dehydrogenized to produce energy. In this process, hydrogen atoms are removed, allowing the glucose molecule to release energy stored in its bonds. This transformation is vital for living organisms, as it provides the necessary energy for various cellular activities. Moreover, the dehydrogenization process is not limited to biological systems; it also plays a significant role in industrial chemistry. For instance, the production of alkenes from alkanes often involves dehydrogenizing the alkane to form an alkene. This reaction is critical in the petrochemical industry, where alkenes serve as building blocks for various chemicals, including plastics and synthetic fibers. The ability to effectively dehydrogenize alkanes has significant implications for the efficiency and sustainability of chemical manufacturing. Furthermore, catalysts are often employed to facilitate the dehydrogenization process, making it more efficient and selective. Catalysts lower the activation energy required for the reaction, allowing it to proceed at a faster rate and under milder conditions. Research into new catalytic materials continues to be a vibrant area of study, as scientists seek to improve the dehydrogenization process for both economic and environmental reasons. In addition to its importance in energy production and industrial applications, dehydrogenization also has implications in the field of renewable energy. For example, hydrogen fuel cells rely on the dehydrogenization of hydrogen-rich compounds to generate electricity. By understanding how to efficiently dehydrogenize these compounds, researchers can develop better methods for harnessing clean energy sources, contributing to a more sustainable future. In conclusion, the process of dehydrogenize is a fundamental reaction in both organic chemistry and industrial applications. Its significance spans across various fields, from biological systems to renewable energy technologies. As we continue to explore and understand the mechanisms behind dehydrogenization, we unlock new possibilities for innovation and sustainability in our world. Whether in the context of energy production, chemical synthesis, or environmental solutions, mastering the concept of dehydrogenize is essential for anyone interested in the sciences and their applications in everyday life.
在有机化学领域,各种反应在将简单分子转变为更复杂结构中发挥着至关重要的作用。其中一个反应是脱氢过程,它涉及从分子中去除氢原子。这个反应对许多生化过程和工业应用至关重要。理解脱氢的功能可以为我们提供关于化学中自然和合成途径的深入见解。 首先,术语脱氢指的是从化合物中去除氢,通常导致形成双键或分子的氧化态提高。例如,在细胞呼吸过程中,葡萄糖经历一系列反应,逐渐被脱氢以产生能量。在这个过程中,氢原子被去除,使葡萄糖分子释放其键中储存的能量。这种转变对生物体至关重要,因为它为各种细胞活动提供了必要的能量。 此外,脱氢化过程不仅限于生物系统;它在工业化学中也发挥着重要作用。例如,烷烃的生产通常涉及脱氢烷烃形成烯烃。这个反应在石油化工行业中至关重要,因为烯烃作为各种化学品的基础,包括塑料和合成纤维。有效地脱氢烷烃的能力对化学制造的效率和可持续性具有重要影响。 此外,催化剂通常用于促进脱氢过程,使其更高效和选择性。催化剂降低了反应所需的活化能,使反应能够在更快的速度和更温和的条件下进行。对新催化材料的研究仍然是一个充满活力的研究领域,科学家们寻求改善脱氢过程,以实现经济和环境的双重利益。 除了在能量生产和工业应用中的重要性外,脱氢化在可再生能源领域也具有重要意义。例如,氢燃料电池依赖于富氢化合物的脱氢以产生电力。通过理解如何有效地脱氢这些化合物,研究人员可以开发出更好的方法来利用清洁能源,从而为更可持续的未来做出贡献。 总之,脱氢过程是有机化学和工业应用中的基本反应。其重要性跨越多个领域,从生物系统到可再生能源技术。随着我们继续探索和理解脱氢化背后的机制,我们为创新和可持续性开辟了新的可能性。在能源生产、化学合成或环境解决方案的背景下,掌握脱氢的概念对任何对科学及其在日常生活中的应用感兴趣的人来说都是必不可少的。
文章标题:dehydrogenize的意思是什么
文章链接:https://www.liuxue886.cn/danci/332665.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论