deuteride
简明释义
n. [核] 氘化物;重氢化物
英英释义
A deuteride is a compound in which deuterium, an isotope of hydrogen with one proton and one neutron, replaces the normal hydrogen in a molecule. | 重氢化物是指一种化合物,其中重氢(氢的同位素,具有一个质子和一个中子)取代了分子中的普通氢。 |
单词用法
重氢离子 | |
重氢化合物 | |
氢重氢 | |
重氢形成 |
同义词
氘化合物 | Deuteride is often used in nuclear magnetic resonance (NMR) spectroscopy. | 氘化物常用于核磁共振(NMR)光谱分析。 | |
重氢同位素 | Deuterium compounds are important in studies of reaction mechanisms. | 氘化合物在反应机制研究中非常重要。 |
反义词
氕 | 氕是氢的最丰富同位素。 | ||
氢 | Hydrogen has three isotopes: protium, deuterium, and tritium. | 氢有三种同位素:氕、氘和氚。 |
例句
1.Recovering deuterium from uranium deuteride bed by means of the isotopic exchange reaction between the solid and gas phases at room temperature is introduced.
研究了氢气经过流通式氘化铀床,利用气-固相之间的同位素交换反应回收床中的氘。
2.Recovering deuterium from uranium deuteride bed by means of the isotopic exchange reaction between the solid and gas phases at room temperature is introduced.
研究了氢气经过流通式氘化铀床,利用气-固相之间的同位素交换反应回收床中的氘。
3.In nuclear physics, a molecule of water containing deuterium is called heavy water, which is often represented as D2O or HDO, where the deuterium is referred to as deuteride 重氢化物.
在核物理中,含有氘的水分子称为重水,通常表示为D2O或HDO,其中氘被称为deuteride 重氢化物。
4.The study of deuterides 重氢化物 can provide insights into the behavior of hydrogen in various chemical reactions.
对deuterides 重氢化物的研究可以提供氢在各种化学反应中行为的见解。
5.Researchers are exploring the use of deuteride 重氢化物 compounds in advanced nuclear reactors for their unique properties.
研究人员正在探索在先进核反应堆中使用deuteride 重氢化物化合物的独特性质。
6.When studying isotopes, scientists often compare regular hydrogen with its deuteride 重氢化物 counterpart to understand differences in bonding.
在研究同位素时,科学家们通常将常规氢与其deuteride 重氢化物对应物进行比较,以理解结合的差异。
7.The presence of a deuteride 重氢化物 in a sample can be detected using mass spectrometry techniques.
样品中deuteride 重氢化物的存在可以通过质谱技术检测到。
作文
In the world of chemistry, isotopes play a significant role in understanding the properties and behaviors of elements. One such isotope is deuterium, which is a stable isotope of hydrogen. When we refer to compounds that contain deuterium, we often use the term deuteride to describe them. A deuteride is essentially a compound where deuterium replaces the regular hydrogen atom. This subtle change can have profound implications for the physical and chemical properties of the compound. For instance, deuterides often exhibit different boiling and melting points compared to their hydrogen counterparts due to the increased mass of deuterium. The study of deuterides has applications in various fields, including nuclear magnetic resonance (NMR) spectroscopy. In NMR, using deuterides instead of regular hydrogen-containing compounds can enhance the clarity of the results. This is because deuterium has a different magnetic moment than protium (the most common hydrogen isotope), allowing chemists to obtain more precise data about molecular structures. Moreover, deuterides are also significant in the field of organic chemistry. They can be utilized as tracers in chemical reactions, helping researchers to track the pathways and mechanisms of complex reactions. By substituting deuterium for hydrogen in a molecule, scientists can gain insights into how the molecule behaves during a reaction without altering its fundamental characteristics. This technique is invaluable for understanding reaction kinetics and mechanisms. Another fascinating aspect of deuterides is their role in biological research. Deuterated compounds are often used in studies involving metabolic pathways. Since deuterium is non-radioactive and chemically similar to hydrogen, it can be incorporated into biological molecules without significantly altering their function. This allows scientists to trace the incorporation and metabolism of these compounds within living organisms, providing valuable information about biological processes. However, the production of deuterides is not without challenges. The synthesis of deuterated compounds can be complex and often requires specialized techniques and equipment. Additionally, the cost of deuterium is higher than that of regular hydrogen, which can limit the widespread use of deuterides in certain applications. Despite these challenges, the unique properties of deuterides continue to make them an area of interest in scientific research. In conclusion, the term deuteride refers to a compound that contains deuterium in place of hydrogen. Understanding deuterides is crucial for various scientific disciplines, including chemistry, biology, and physics. Their unique properties and applications make them a valuable tool for researchers seeking to unravel the complexities of molecular interactions and biological processes. As science continues to advance, the importance of deuterides and their potential applications will undoubtedly grow, paving the way for new discoveries and innovations in numerous fields.
在化学的世界里,同位素在理解元素的性质和行为方面发挥着重要作用。其中一个同位素是氘,它是氢的一种稳定同位素。当我们提到含有氘的化合物时,我们通常使用术语deuteride来描述它们。deuteride本质上是指氘取代了常规氢原子的化合物。这种微妙的变化可能对化合物的物理和化学性质产生深远的影响。例如,由于氘的质量增加,deuterides通常表现出与其氢对应物不同的沸点和熔点。 deuterides的研究在多个领域都有应用,包括核磁共振(NMR)光谱学。在NMR中,使用deuterides代替含有常规氢的化合物可以增强结果的清晰度。这是因为氘与普通氢(最常见的氢同位素)具有不同的磁矩,使化学家能够获得关于分子结构的更精确数据。 此外,deuterides在有机化学领域也具有重要意义。它们可以作为化学反应中的示踪剂,帮助研究人员追踪复杂反应的途径和机制。通过在分子中用氘替代氢,科学家可以获得关于分子在反应中如何行为的深入见解,而不会改变其基本特性。这种技术对于理解反应动力学和机制是非常宝贵的。 deuterides的另一个迷人方面是它们在生物研究中的作用。氘化合物常用于代谢途径的研究。由于氘是非放射性的,并且在化学上与氢相似,因此可以将其纳入生物分子中,而不会显著改变其功能。这使科学家能够追踪这些化合物在活生物体内的结合和代谢过程,从而提供有关生物过程的宝贵信息。 然而,deuterides的生产并非没有挑战。氘化合物的合成可能很复杂,通常需要专业的技术和设备。此外,氘的成本高于常规氢,这可能限制某些应用中deuterides的广泛使用。尽管面临这些挑战,deuterides独特的性质仍然使其成为科学研究中的一个关注领域。 总之,术语deuteride指的是一种含有氘代替氢的化合物。理解deuterides对于化学、生物学和物理学等多个科学学科至关重要。它们独特的性质和应用使其成为研究人员揭示分子相互作用和生物过程复杂性的宝贵工具。随着科学的不断进步,deuterides的重要性及其潜在应用无疑会增长,为多个领域的新发现和创新铺平道路。
文章标题:deuteride的意思是什么
文章链接:https://www.liuxue886.cn/danci/335905.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论