dilatational
简明释义
英[ˌdɪl.əˈteɪ.ʃən.əl]美[ˌdɪləˈteɪʃənl]
膨胀的
英英释义
与扩张或膨胀有关或引起的。 |
单词用法
扩张应变 | |
扩张波 | |
扩张应力 | |
扩张特性 | |
扩张行为 | |
扩张响应 |
同义词
反义词
压缩的 | 该材料在负载下表现出压缩强度。 | ||
收缩的 | 在收缩阶段,结构会缩小。 |
例句
1.The sliding movement between piece structures is easy to take place in DQ1, 3, 10, 15, resulting their dilatational viscosity unchangeable with the dilatational frequency increasing.
馏分1、3、10、15的界面膜中易发生片状结构的滑移,其扩张粘度基本上不随扩张频率的变化而变化。
2.The sliding movement between piece structures is easy to take place in DQ1, 3, 10, 15, resulting their dilatational viscosity unchangeable with the dilatational frequency increasing.
馏分1、3、10、15的界面膜中易发生片状结构的滑移,其扩张粘度基本上不随扩张频率的变化而变化。
3.With the dilatational frequency increasing, the dilatational modulus, dilatational elasticity increase and dilatational viscosity, phase Angle decrease.
随扩张频率的增加,扩张模量、扩张弹性逐渐增大,而扩张粘度、相角逐渐减小。
4.Dilatational wave persisted for 30 minutes.
疏密波,时间持续30分钟。
5.The engineer studied the dilatational 膨胀的 properties of the material to ensure its suitability for the construction project.
工程师研究了材料的dilatational 膨胀的 特性,以确保其适用于建设项目。
6.In fluid dynamics, dilatational 膨胀的 waves can indicate changes in pressure within the system.
在流体动力学中,dilatational 膨胀的 波动可以表明系统内压力的变化。
7.The dilatational 膨胀的 strain in the material was measured to assess its performance under stress.
为了评估材料在应力下的性能,测量了其dilatational 膨胀的 应变。
8.Researchers are investigating the dilatational 膨胀的 effects of temperature on various polymers.
研究人员正在调查温度对各种聚合物的dilatational 膨胀的 影响。
9.The dilatational 膨胀的 behavior of gases is crucial for understanding thermodynamic processes.
气体的dilatational 膨胀的 行为对于理解热力学过程至关重要。
作文
In the field of physics and engineering, understanding the properties of materials is crucial for various applications. One such property that often comes into play is the concept of dilatational strain, which refers to the change in volume of a material under stress. This phenomenon is particularly significant when analyzing how materials respond to external forces, such as pressure or tension. When we think about structures like bridges, buildings, or even everyday objects, the dilatational properties of the materials used can greatly affect their durability and functionality. For instance, consider the construction of a high-rise building. Engineers must take into account the dilatational behavior of concrete and steel, as these materials will expand and contract with temperature changes and load variations. If the dilatational properties are not properly understood, it could lead to structural weaknesses, cracks, or even catastrophic failures. Therefore, thorough testing and analysis of materials under dilatational conditions are essential during the design phase. Moreover, the concept of dilatational strain is not limited to static structures. In dynamic systems, such as bridges that experience constant traffic, the dilatational effects become even more pronounced. Engineers often use advanced modeling techniques to predict how these structures will behave over time, ensuring they can withstand the stresses imposed by daily use. This predictive capability is vital for maintaining safety and performance standards in civil engineering. In addition to civil engineering, the dilatational properties of materials play a significant role in other fields, such as geophysics and material science. For example, when studying earthquakes, scientists analyze the dilatational changes in the Earth's crust to understand the mechanics behind seismic events. By examining how rocks expand and contract under stress, researchers can gain insights into fault lines and potential earthquake zones, ultimately contributing to better predictive models and safety measures. Furthermore, in the realm of manufacturing, the dilatational characteristics of polymers and metals are critical for product design. When creating items that must endure varying temperatures or pressures, engineers must consider how the materials will react under dilatational stress. This consideration ensures that products maintain their integrity and function throughout their lifecycle, whether they are automotive parts, consumer electronics, or medical devices. In conclusion, the term dilatational encompasses a wide range of applications and implications across multiple disciplines. From civil engineering to geophysics and manufacturing, understanding dilatational properties is essential for ensuring safety, reliability, and performance. As technology advances and our understanding of materials deepens, the ability to accurately predict and manage dilatational behaviors will continue to be a cornerstone of innovation and progress in various fields.
在物理和工程领域,理解材料的性质对于各种应用至关重要。其中一个经常涉及的特性是膨胀应变的概念,它指的是材料在应力下体积的变化。这种现象在分析材料如何响应外部力量(如压力或拉伸)时尤为重要。当我们考虑像桥梁、建筑物甚至日常物品这样的结构时,所用材料的膨胀特性会极大地影响它们的耐久性和功能性。 例如,考虑一座高层建筑的建设。工程师必须考虑混凝土和钢材的膨胀行为,因为这些材料会随着温度变化和负载变化而膨胀和收缩。如果对膨胀特性的理解不够深入,可能会导致结构弱点、裂缝甚至灾难性故障。因此,在设计阶段,对材料在膨胀条件下进行彻底测试和分析是至关重要的。 此外,膨胀的概念不仅限于静态结构。在动态系统中,例如经历持续交通的桥梁,膨胀的效果变得更加明显。工程师通常使用先进的建模技术来预测这些结构随时间的表现,确保它们能够承受日常使用施加的压力。这种预测能力对于维护土木工程的安全和性能标准至关重要。 除了土木工程,材料的膨胀特性在地球物理学和材料科学等其他领域也发挥着重要作用。例如,在研究地震时,科学家分析地壳中的膨胀变化以理解地震事件背后的机制。通过检查岩石在应力下的膨胀和收缩,研究人员可以深入了解断层线和潜在的地震区域,从而最终有助于更好的预测模型和安全措施。 此外,在制造领域,聚合物和金属的膨胀特性对产品设计至关重要。在创建必须承受不同温度或压力的物品时,工程师必须考虑材料在膨胀应力下的反应。这种考虑确保产品在其生命周期内保持完整性和功能,无论它们是汽车零件、消费电子产品还是医疗设备。 总之,膨胀这个术语涵盖了多个学科的广泛应用和含义。从土木工程到地球物理学和制造业,理解膨胀特性对确保安全、可靠性和性能至关重要。随着技术的进步和我们对材料理解的加深,准确预测和管理膨胀行为的能力将继续成为各个领域创新和进步的基石。
文章标题:dilatational的意思是什么
文章链接:https://www.liuxue886.cn/danci/337661.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论