discontinuous
简明释义
英[ˌdɪskənˈtɪnjuəs]美[ˌdɪskənˈtɪnjuəs]
adj. 不连续的;间断的
英英释义
不连续的;有中断或间隙的。 | |
以序列中的间断或间隔为特征。 |
单词用法
不连续函数 | |
不连续光谱 | |
不连续变化 | |
不连续过程 |
同义词
间歇的 | 今天的雨是间歇性的。 | ||
零星的 | 周末在城市中爆发了零星的抗议活动。 | ||
片段的 | His fragmentary memories of the event made it difficult to piece together a complete story. | 他对事件的片段记忆使得拼凑出完整的故事变得困难。 | |
不连贯的 | 不连贯的演讲让观众感到困惑。 |
反义词
连续的 | 水的连续流动对灌溉至关重要。 | ||
不间断的 | 她和朋友进行了不间断的交谈。 |
例句
1.Sartre's discontinuous illogical narrating is a rejecting and rebelling against all the novel traditions.
其采用的非连续性、非逻辑性的叙述则是对过去一切小说传统的拒绝和反判。
2.For the repair of stainless steel, to reduce heat energy and clean completely, gouging should in discontinuous way.
不透钢的返修,应尽量采用间歇和分段气刨,以减少热量输入,并彻底清除渗碳层,露出金属光泽后方可焊接。
3.Methods Rat gastric parietal cells were isolated by pronase digestion and purified by discontinuous density-gradient centrifugation.
方法采用链霉蛋白酶消化、间断密度梯度离心纯化大鼠胃黏膜壁细胞。
4.Now the inclined plane separates it and makes it into two discontinuous layers. It must be caused by the displacement along the inclined plane.
现在倾斜面使这一岩层分开,使之变成两个不连续的岩层,这一定是由于沿着倾斜面岩层发生位移而造成。
5.Abaxial leaf surface with a patchy discontinuous indumentum.
叶背面具一不规则的不连续的毛被。
6.The difficulties of classification tasks are expressed by discontinuous category distribution and adding relevant dimensions and category number.
分类任务的难度主要通过增加相关维度的数量、类别刺激分布的间断性和增加类别数量等方式体现出来。
7.There are two operating modes: current continuous and current discontinuous.
它有两种工作状态:电流连续和电流断续。
8.The graph shows a discontinuous 不连续的 function at certain points.
这个图表显示了某些点处的一个不连续的函数。
9.The training program has discontinuous 不连续的 sessions that can confuse participants.
这个培训项目有不连续的课程,可能会让参与者感到困惑。
10.We observed discontinuous 不连续的 patterns in the data collected over the years.
我们观察到多年收集的数据中存在不连续的模式。
11.His career path was quite discontinuous 不连续的, with many changes in direction.
他的职业生涯相当不连续的,方向变化很多。
12.The project faced discontinuous 不连续的 funding, affecting its progress.
该项目面临不连续的资金问题,影响了进展。
作文
In the study of mathematics and physics, we often encounter various types of functions and phenomena. One particularly interesting concept is that of being discontinuous, which refers to a situation where a function does not have a defined value at certain points or experiences sudden jumps in its values. This characteristic can be quite significant in understanding how certain systems behave under different conditions. For instance, when analyzing the motion of an object, if we consider a scenario where the object suddenly stops and then starts moving again, we can describe this behavior as discontinuous because there are moments where the object's velocity is undefined. In real life, we can see examples of discontinuous changes everywhere. Take, for example, the process of learning a new skill. At times, one might feel that progress is steady and continuous, but there are also moments of sudden insight or breakthroughs, followed by periods where it seems like no progress is being made. These fluctuations can be described as discontinuous learning phases. The human brain often works in such a manner, where information is processed in bursts rather than in a smooth, linear fashion. Moreover, in economics, we can observe discontinuous changes in market trends. Stock prices may remain stable for a long period, only to suddenly spike or plummet due to unforeseen events or news. This unpredictability is a hallmark of discontinuous behavior in financial markets. Investors must be aware of these potential shifts to make informed decisions. Understanding the implications of discontinuous functions and behaviors is crucial not only in theoretical contexts but also in practical applications. For engineers, recognizing discontinuous elements in design and construction can lead to safer and more effective structures. In computer science, algorithms that handle discontinuous data need to be carefully crafted to ensure accuracy and efficiency. In conclusion, the term discontinuous encompasses a variety of phenomena across different fields. Whether in mathematics, learning, economics, or engineering, recognizing discontinuous patterns allows us to better understand and navigate the complexities of the world around us. Embracing the idea that not all processes are linear can lead to greater insights and innovations. As we continue to study and apply these concepts, we gain a richer appreciation for the discontinuous nature of reality, encouraging us to think critically and adaptively in our pursuits.
在数学和物理的研究中,我们经常会遇到各种类型的函数和现象。一个特别有趣的概念是不连续,它指的是一个函数在某些点没有定义值或其值发生突然跳跃的情况。这一特征在理解某些系统在不同条件下的行为时可能非常重要。例如,在分析物体的运动时,如果我们考虑一个物体突然停止然后再次开始移动的场景,我们可以将这种行为描述为不连续,因为在某些时刻物体的速度是未定义的。 在现实生活中,我们可以在各处看到不连续变化的例子。以学习新技能的过程为例。有时,人们可能会觉得进步是稳定和连续的,但也会有突然的领悟或突破,之后又会经历似乎没有进展的时期。这些波动可以描述为不连续的学习阶段。人类大脑往往以这种方式运作,信息处理是以突发的形式而非平滑的线性方式进行的。 此外,在经济学中,我们可以观察到市场趋势的不连续变化。股票价格可能在很长一段时间内保持稳定,只有在突发事件或新闻出现时才会突然飙升或暴跌。这种不可预测性是金融市场中不连续行为的标志。投资者必须意识到这些潜在的变化,以便做出明智的决策。 理解不连续函数和行为的含义不仅在理论背景下至关重要,而且在实际应用中也是如此。对于工程师来说,识别设计和施工中的不连续元素可以导致更安全和更有效的结构。在计算机科学中,处理不连续数据的算法需要精心设计,以确保准确性和效率。 总之,术语不连续涵盖了不同领域的各种现象。无论是在数学、学习、经济学还是工程学中,识别不连续模式使我们能够更好地理解和应对周围世界的复杂性。接受并非所有过程都是线性的这一理念,可以带来更深刻的洞察和创新。随着我们继续研究和应用这些概念,我们对现实的不连续本质有了更丰富的欣赏,鼓励我们在追求中进行批判性和适应性的思考。
文章标题:discontinuous的意思是什么
文章链接:https://www.liuxue886.cn/danci/339174.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论