dismutation
简明释义
英[ˌdɪsmjuːˈteɪʃən]美[dɪsmjʊˈteɪʃn]
n. 歧化作用
英英释义
单词用法
反变反应 | |
反变过程 | |
化合物的反变 | |
涉及酶的反变 |
同义词
突变 | The dismutation of superoxide radicals is crucial for cellular defense. | 超氧阴离子的消变对细胞防御至关重要。 |
反义词
突变 | 病毒的突变导致了新的株出现。 | ||
转变 | 生态系统的转变是一个渐进的过程。 |
例句
1.Processes of producing gasoline and LPG with dismutation catalyst used the light hydrocarbon as feedstocks were studied.
本文研究了以油田轻烃为原料,通过歧化催化反应生产汽油和LPG的工艺过程。
2.Processes of producing gasoline and LPG with dismutation catalyst used the light hydrocarbon as feedstocks were studied.
本文研究了以油田轻烃为原料,通过歧化催化反应生产汽油和LPG的工艺过程。
3.The process of electron transfer in the cell can lead to a type of reaction called dismutation.
细胞中的电子转移过程可以导致一种称为变异反应的反应。
4.In biochemistry, dismutation often refers to the conversion of a single substance into two different products.
在生物化学中,变异反应通常指将一种物质转化为两种不同的产物。
5.The enzyme catalyzes the dismutation of superoxide into hydrogen peroxide and oxygen.
该酶催化超氧化物的变异反应,生成过氧化氢和氧气。
6.Research has shown that dismutation plays a crucial role in regulating oxidative stress.
研究表明,变异反应在调节氧化压力中起着至关重要的作用。
7.Certain bacteria utilize dismutation to protect themselves from harmful reactive oxygen species.
某些细菌利用变异反应来保护自己免受有害的活性氧物质的伤害。
作文
In the realm of chemistry, the term dismutation refers to a specific type of redox reaction where a single substance is simultaneously oxidized and reduced, resulting in two different products. This process can be quite fascinating as it illustrates the complexity of chemical reactions and the intricate balance of oxidation states. To better understand dismutation, let us explore its significance and applications in various fields. One of the most notable examples of dismutation occurs with hydrogen peroxide (H2O2). When hydrogen peroxide decomposes, it undergoes dismutation to form water (H2O) and oxygen gas (O2). The reaction can be summarized as follows: 2 H2O2 → 2 H2O + O2 In this reaction, one molecule of hydrogen peroxide is oxidized to produce oxygen, while another molecule is reduced to form water. This dual transformation not only highlights the essence of dismutation but also showcases how one compound can lead to the formation of multiple products through simultaneous processes. The importance of dismutation extends beyond simple chemical reactions. In biological systems, for instance, enzymes play a crucial role in facilitating dismutation reactions. Catalase, an enzyme found in living organisms, helps decompose hydrogen peroxide into water and oxygen, protecting cells from oxidative damage. This biological dismutation is vital for cellular health, as excessive accumulation of hydrogen peroxide can lead to harmful effects, including cell death. Furthermore, dismutation has implications in environmental science. In natural ecosystems, certain microorganisms utilize dismutation processes to convert harmful substances into less toxic forms. For example, some bacteria can perform dismutation of sulfur compounds, thereby playing a role in the sulfur cycle and contributing to the overall balance of nutrients in the environment. In industrial applications, understanding dismutation can lead to more efficient chemical processes. Industries that deal with oxidative reactions can optimize their methods by harnessing dismutation pathways, reducing waste and improving yield. This aspect of dismutation not only enhances productivity but also promotes sustainability by minimizing the environmental impact of chemical manufacturing. In conclusion, the concept of dismutation is a remarkable demonstration of the dual nature of chemical reactions, where a single substance can undergo both oxidation and reduction simultaneously. Its significance spans across various domains, from biological systems to environmental science and industrial applications. By studying dismutation, we gain deeper insights into the complex interactions within chemical processes and their broader implications in our world. As we continue to explore the intricacies of chemistry, the phenomenon of dismutation serves as a reminder of the delicate balance that sustains life and drives innovation in science and industry.
在化学领域,术语dismutation指的是一种特定类型的氧化还原反应,其中单一物质同时被氧化和还原,从而产生两种不同的产物。这一过程相当迷人,因为它展示了化学反应的复杂性以及氧化态的微妙平衡。为了更好地理解dismutation,让我们探讨其在各个领域的重要性和应用。 一个最显著的dismutation示例发生在过氧化氢(H2O2)中。当过氧化氢分解时,它经历dismutation形成水(H2O)和氧气(O2)。该反应可以总结如下: 2 H2O2 → 2 H2O + O2 在这个反应中,一分子过氧化氢被氧化生成氧气,而另一分子则被还原形成水。这种双重转化不仅突显了dismutation的本质,还展示了单一化合物如何通过同时的过程形成多个产物。 dismutation的重要性超越了简单的化学反应。例如,在生物系统中,酶在促进dismutation反应中发挥着关键作用。催化酶是存在于生物体中的一种酶,帮助将过氧化氢分解为水和氧气,从而保护细胞免受氧化损伤。这种生物dismutation对于细胞健康至关重要,因为过量积累的过氧化氢可能导致有害的效果,包括细胞死亡。 此外,dismutation在环境科学中也有重要意义。在自然生态系统中,某些微生物利用dismutation过程将有害物质转化为较少毒性的形式。例如,一些细菌能够进行硫化合物的dismutation,从而在硫循环中发挥作用,并为环境中的养分整体平衡做出贡献。 在工业应用中,理解dismutation可以导致更高效的化学过程。处理氧化反应的行业可以通过利用dismutation路径来优化其方法,减少废物并提高产量。dismutation的这一方面不仅提升了生产力,还通过最小化化学制造对环境的影响来促进可持续发展。 总之,dismutation的概念是化学反应双重性质的显著表现,其中单一物质可以同时经历氧化和还原。它的重要性跨越多个领域,从生物系统到环境科学和工业应用。通过研究dismutation,我们可以深入了解化学过程中的复杂相互作用及其在我们世界中的更广泛影响。随着我们继续探索化学的复杂性,dismutation现象提醒我们维持生命和推动科学与工业创新的微妙平衡。
文章标题:dismutation的意思是什么
文章链接:https://www.liuxue886.cn/danci/340134.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论