distributively
简明释义
英[dɪsˈtrɪb.jʊ.tɪv.li]美[dɪsˈtrɪb.jə.tɪv.li]
adv. 分配地;分发地
英英释义
单词用法
分配地应用 | |
在一个集合上分配地 | |
分配结合的 | |
分配交换的 |
同义词
反义词
集中地 | The resources were allocated concentratively to maximize efficiency. | 这些资源被集中分配以最大化效率。 | |
共同地 | 团队共同努力以实现他们的目标。 |
例句
1.The Avifauna of Guizhou is an academic works that completely and systematically introduces the bird resources in Guizhou, which records 417 species and 51 subspecies distributively in Guizhou.
《贵州鸟类志》是一部全面系统介绍贵州鸟类资源的学术专著。共记载分布在贵州的鸟类为417种和51亚种。
2.The Avifauna of Guizhou is an academic works that completely and systematically introduces the bird resources in Guizhou, which records 417 species and 51 subspecies distributively in Guizhou.
《贵州鸟类志》是一部全面系统介绍贵州鸟类资源的学术专著。共记载分布在贵州的鸟类为417种和51亚种。
3.As an application, it is proved that a continuous map of an interval is chaotic iff it is distributively chaotic in a sequence.
给出紧度量空间上连续映射按序列分布混沌的一个充分条件,并证明区间连续自映射是混沌的当且仅当它是按某序列分布混沌的。
4.In mathematics, addition is often treated distributively to simplify expressions.
在数学中,加法通常被处理为分配地以简化表达式。
5.The teacher explained that the property of multiplication works distributively over addition.
老师解释说,乘法的性质在加法上工作时是分配地。
6.When distributing resources, we should do it distributively to ensure fairness.
在分配资源时,我们应该公平地进行,以确保公正。
7.The software allocates tasks distributively among team members.
该软件在团队成员之间分配地分配任务。
8.In a cooperative game, benefits are shared distributively based on contribution.
在合作游戏中,收益根据贡献分配地共享。
作文
Mathematics is a subject that often requires a deep understanding of various concepts and their applications. One such concept is the idea of operations being performed distributively. To understand this term, we need to delve into the fundamentals of arithmetic and algebra. The distributive property states that when you multiply a number by a sum, you can distribute the multiplication across each addend. For example, if we take the expression 3 × (4 + 5), we can apply the distributive property to rewrite it as 3 × 4 + 3 × 5. This means that instead of adding 4 and 5 first and then multiplying by 3, we can multiply 3 by each number separately and then add the results together. This property is not only crucial for solving equations but also serves as a foundational principle in higher mathematics. Understanding how to apply operations distributively allows students to simplify complex problems and solve them more efficiently. In everyday life, we often encounter situations where we can apply this principle without even realizing it. For instance, when budgeting our expenses, we might break down our total costs into individual categories, allowing us to see where our money is going and how we can save it. This is akin to applying the distributive property, as we are distributing our total amount into smaller, more manageable parts. Moreover, the concept of distributive operations extends beyond simple arithmetic. In algebra, we frequently use this property to factor expressions or expand them. For example, when faced with the expression 2(x + 3), we can apply the distributive property to get 2x + 6. This ability to manipulate expressions distributively is essential for solving equations and understanding functions, which are fundamental components of algebra. In addition to its mathematical significance, the notion of distribution can also be observed in various fields such as economics, physics, and computer science. For example, in economics, the idea of distributing resources efficiently among different sectors can be analyzed using similar principles. Understanding how to allocate resources distributively can lead to more effective strategies for maximizing production and ensuring that all sectors have what they need to thrive. Similarly, in physics, the distribution of forces and energy plays a crucial role in understanding systems and their behaviors. When analyzing forces acting on an object, one must consider how those forces can be distributed across different points or areas, leading to a comprehensive understanding of motion and equilibrium. In conclusion, the term distributively encapsulates a vital mathematical principle that has far-reaching implications across various disciplines. Whether we are solving a simple equation or analyzing complex systems in economics or physics, the ability to think about operations distributively enhances our problem-solving skills and deepens our understanding of the world around us. By mastering this concept, we equip ourselves with the tools necessary to tackle a wide range of challenges, making it an invaluable part of our educational journey.
数学是一门常常需要深入理解各种概念及其应用的学科。其中一个概念是操作以分配的方式进行的思想。要理解这个术语,我们需要深入了解算术和代数的基本原理。分配属性指出,当你将一个数字乘以一个和时,你可以将乘法分配到每个加数上。例如,如果我们取表达式3 × (4 + 5),我们可以应用分配属性将其重写为3 × 4 + 3 × 5。这意味着我们可以分别将3乘以每个数字,然后将结果相加,而不是先将4和5相加再乘以3。 这个属性不仅对解决方程至关重要,而且在更高的数学中也是一个基础原则。理解如何以分配的方式应用操作使学生能够简化复杂的问题,从而更有效地解决它们。在日常生活中,我们经常遇到可以不知不觉中应用这一原则的情况。例如,在预算我们的开支时,我们可能会将总成本分解为单独的类别,从而让我们看到钱的去向以及如何节省。这类似于应用分配属性,因为我们将总金额分配到更小、更易管理的部分。 此外,分配操作的概念不仅限于简单的算术。在代数中,我们经常使用这一属性来因式分解或扩展表达式。例如,当面对表达式2(x + 3)时,我们可以应用分配属性得到2x + 6。这种以分配的方式操控表达式的能力对于解决方程和理解函数至关重要,这些都是代数的基本组成部分。 除了其数学意义,分配的概念还可以在经济学、物理学和计算机科学等各个领域中观察到。例如,在经济学中,有效地在不同部门之间分配资源的想法可以使用类似的原则进行分析。理解如何以分配的方式分配资源可以导致更有效的最大化生产和确保所有部门都有生存所需的策略。 同样,在物理学中,力和能量的分布在理解系统及其行为中起着至关重要的作用。在分析作用于物体的力时,必须考虑这些力如何在不同点或区域之间分布,从而全面理解运动和平衡。 总之,术语分配封装了一个重要的数学原则,该原则在各个学科中具有深远的影响。无论我们是在解决简单的方程还是分析经济学或物理学中的复杂系统,思考操作以分配的方式进行的能力增强了我们的解决问题的技能,加深了我们对周围世界的理解。通过掌握这一概念,我们为自己配备了解决各种挑战所需的工具,使其成为我们教育旅程中不可或缺的一部分。
文章标题:distributively的意思是什么
文章链接:https://www.liuxue886.cn/danci/341195.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论