distributive
简明释义
英[dɪˈstrɪbjətɪv]美[dɪˈstrɪbjətɪv]
adj. 分发的,分配的,配送的;经销的,分销的;分配(律)的;个体的(而非整体的)
n. (语法)分配词
英英释义
单词用法
分配公正,分配公平 | |
分配律 |
同义词
反义词
集体的 | 团队的集体努力导致了成功。 | ||
合并的 | The consolidated report provided a clear overview of the data. | 合并的报告提供了数据的清晰概述。 |
例句
1.Hydrologic station is a distributive organization and relates to geography location and geological condition.
水文站是一个离散分布的对象,与地理位置、地质条件密切相关。
2.moral desert has nothing to do with distributive justice?
道德应得与分配正义一点关系都没有?
3.According to distributive application system, this article designs micro bus structure based on ACE.
针对分布式的应用系统,设计了一个基于ace的微总线架构。
4.Studies of energy spectrum analysis on the absorption and distributive laws of nutrient elements in sucking roots of ginkgo biloba l.
银杏吸收根营养元素吸收及分配规律的能谱分析。
5.Not just a distributive question.
不仅仅是一个分配问题。
6.Awn traits of rice, which marked by awn length and distributive characteristic, are involved in its domestication.
水稻芒的性状与驯化过程密切相关,具体表现为芒长短和芒的分布等。
7.The Angle - distributive law of Ag ultrafine particles is studied.
研究了由溅射法产生的银超微粒的角分布规律。
8.Distributive optical amplifier, optical communication station, system and cables.
分布光放大设备,光通信站,光通信系统和光缆。
9.The teacher explained the concept of distributive 分配的 property in mathematics to help students simplify expressions.
老师解释了数学中distributive 分配的性质,以帮助学生简化表达式。
10.In economics, a distributive 分配的 policy aims to allocate resources more equitably among the population.
在经济学中,distributive 分配的政策旨在更公平地分配资源给人口。
11.The distributive 分配的 approach to marketing allows companies to reach a wider audience through multiple channels.
采用distributive 分配的营销方法使公司能够通过多个渠道接触更广泛的受众。
12.The distributive 分配的 justice system seeks to ensure that all individuals receive fair treatment.
该distributive 分配的司法系统力求确保所有个人获得公正的对待。
13.Using the distributive 分配的 law, we can simplify the expression by distributing the multiplication over addition.
使用distributive 分配的法则,我们可以通过将乘法分配到加法上来简化表达式。
作文
In the realm of mathematics and education, the concept of distributive property plays a crucial role in simplifying expressions and solving equations. The distributive property states that for any numbers a, b, and c, the equation a(b + c) = ab + ac holds true. This fundamental principle not only aids in arithmetic but also lays the groundwork for more complex algebraic concepts. Understanding the distributive property is essential for students as it enhances their problem-solving skills and fosters a deeper comprehension of mathematical operations. The importance of the distributive property extends beyond mere calculations; it can be applied in various real-life situations. For instance, consider a scenario where a person is purchasing multiple items from a store. If an individual buys three shirts priced at $20 each and two pairs of pants priced at $30 each, instead of calculating the total separately, one can use the distributive property to simplify the process. By grouping the items, the total cost can be calculated as follows: 3($20) + 2($30) = $60 + $60 = $120. This application of the distributive property demonstrates how mathematical principles can streamline everyday tasks. Moreover, the distributive property serves as a bridge connecting different areas of mathematics. For example, when dealing with polynomials, applying the distributive property allows for the expansion of expressions such as (x + 2)(x + 3). By utilizing the distributive property, we can expand this expression to x^2 + 5x + 6. This capability to manipulate and expand expressions is vital for higher-level mathematics, including calculus and beyond. In educational settings, teachers often emphasize the distributive property through various teaching methods. Hands-on activities, visual aids, and interactive games can make learning about the distributive property engaging and effective. By incorporating these techniques, educators can help students grasp the concept more thoroughly, ensuring they understand its significance in both theoretical and practical contexts. Furthermore, the distributive property is not limited to mathematics alone; it has implications in fields such as economics and computer science. In economics, the distributive property can be seen in the allocation of resources. For instance, when distributing a fixed amount of resources among different sectors, understanding how to effectively apply the distributive principle can lead to more efficient outcomes. Similarly, in computer science, algorithms often utilize the distributive property to optimize calculations and improve performance. In conclusion, the distributive property is a fundamental concept that permeates various aspects of mathematics and beyond. Its ability to simplify calculations, connect different mathematical ideas, and apply to real-world scenarios makes it an invaluable tool for learners and professionals alike. As students continue their educational journey, mastering the distributive property will undoubtedly enhance their analytical skills and prepare them for more advanced studies. Therefore, it is essential to recognize and appreciate the significance of the distributive property in fostering a comprehensive understanding of mathematics and its applications in everyday life.
在数学和教育领域,分配性质的概念在简化表达式和求解方程中发挥着至关重要的作用。分配性质指出,对于任何数字 a、b 和 c,等式 a(b + c) = ab + ac 是成立的。这一基本原则不仅有助于算术运算,还为更复杂的代数概念奠定了基础。理解 分配性质对学生来说至关重要,因为它增强了他们的解决问题能力,并促进了对数学运算的更深层次理解。 分配性质的重要性超越了简单的计算;它可以应用于各种现实生活场景。例如,考虑一个人从商店购买多件商品的场景。如果一个人购买三件每件价格为 20 美元的衬衫和两条每条价格为 30 美元的裤子,那么与其分别计算总价,不如利用 分配性质来简化这一过程。通过将商品分组,可以这样计算总费用:3($20) + 2($30) = $60 + $60 = $120。这种对 分配性质的应用展示了数学原理如何简化日常任务。 此外,分配性质作为连接不同数学领域的桥梁。比如,在处理多项式时,应用 分配性质可以扩展像 (x + 2)(x + 3) 这样的表达式。通过利用 分配性质,我们可以将这个表达式扩展为 x^2 + 5x + 6。这种操作和扩展表达式的能力对于更高水平的数学(包括微积分及其他)至关重要。 在教育环境中,教师通常通过各种教学方法强调 分配性质。动手活动、视觉辅助工具和互动游戏可以使学习 分配性质变得生动有趣且有效。通过结合这些技巧,教育工作者可以帮助学生更全面地理解这一概念,从而确保他们认识到其在理论和实践中的重要性。 此外,分配性质不仅限于数学;它在经济学和计算机科学等领域也有影响。在经济学中,分配性质可以在资源分配中体现。例如,在将固定数量的资源分配给不同部门时,理解如何有效应用 分配原理可以导致更高效的结果。同样,在计算机科学中,算法通常利用 分配性质来优化计算并提高性能。 总之,分配性质是一个渗透于数学及其他各个方面的基本概念。它简化计算、连接不同数学思想以及应用于现实场景的能力,使其成为学习者和专业人士不可或缺的工具。随着学生继续他们的教育旅程,掌握 分配性质无疑会增强他们的分析能力,为更高级的学习做好准备。因此,认识到并欣赏 分配性质在促进对数学及其在日常生活中的应用的全面理解方面的重要性是至关重要的。
文章标题:distributive的意思是什么
文章链接:https://www.liuxue886.cn/danci/341199.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论