distributivity
简明释义
英[dɪsˌtrɪbjəˈtɪvɪti]美[dɪsˈtrɪbjətɪvɪti]
n. [数] 分配性;分布性;分配律
英英释义
The property of a binary operation that allows it to distribute over another operation, such as in the expression a(b + c) = ab + ac. | 一种二元运算的性质,使其能够在另一个运算上进行分配,例如在表达式a(b + c) = ab + ac中。 |
单词用法
分配律 | |
分配性质 | |
乘法对加法的分配性 | |
分配正义 |
同义词
反义词
非分配性 | The non-distributivity of the operation complicates the calculations. | 该运算的非分配性使得计算变得复杂。 | |
独立性 | In some algebraic structures, independence is preferred over distributivity. | 在某些代数结构中,独立性比分配性更受欢迎。 |
例句
1.The paper propose some improvements on the scheduling optimization algorithm under strong time constraints which bases on the associativity and distributivity properties of arithmetic operations.
对基于操作的结合律与分配律进行变换的强时间约束条件下的调度算法提出了改进。
2.The paper propose some improvements on the scheduling optimization algorithm under strong time constraints which bases on the associativity and distributivity properties of arithmetic operations.
对基于操作的结合律与分配律进行变换的强时间约束条件下的调度算法提出了改进。
3.Field bus is a product integrating technology of computer, communication and control, is a new generation control system which is distributivity and open up.
现场总线是计算机技术,通信技术和控制技术高度综合与集成的产物,是新一代的全分布式和开发式的控制系统。
4.This is a weakening of this distributivity condition, called modularity .
这个分配性条件可减弱为所谓性的条件,一个格称为模格。
5.This is a weakening of this distributivity condition, called modularity.
这个分配性条件可减弱为所谓性的条件,一个格称为模格。
6.In mathematics, the property of distributivity 分配性 allows us to simplify expressions like a(b + c) = ab + ac.
在数学中,distributivity 分配性 的特性使我们能够简化表达式,例如 a(b + c) = ab + ac。
7.Understanding distributivity 分配性 is crucial for solving algebraic equations efficiently.
理解 distributivity 分配性 对于有效解决代数方程至关重要。
8.The distributivity 分配性 of multiplication over addition is a fundamental concept in arithmetic.
乘法对加法的 distributivity 分配性 是算术中的基本概念。
9.In programming, using distributivity 分配性 can help optimize algorithms by reducing nested loops.
在编程中,使用 distributivity 分配性 可以通过减少嵌套循环来优化算法。
10.The principle of distributivity 分配性 is often applied in statistics when calculating expected values.
在统计学中,distributivity 分配性 原则通常用于计算期望值。
作文
In mathematics, the concept of distributivity is fundamental to understanding how operations interact with each other. Specifically, it refers to the property that allows us to distribute a single term across a sum or difference within parentheses. For example, when we have an expression like a(b + c), we can apply the distributivity property to expand it to ab + ac. This principle not only simplifies calculations but also forms the basis for more complex algebraic manipulations. The significance of distributivity extends beyond basic arithmetic; it plays a crucial role in various branches of mathematics, including algebra and calculus. In algebra, recognizing when to apply distributivity can help solve equations more efficiently. Consider an equation such as 3(x + 4) = 21. By employing the distributivity property, we can rewrite this as 3x + 12 = 21, making it easier to isolate x and find its value. Moreover, the distributivity property is essential in polynomial expressions. When multiplying polynomials, we often rely on distributivity to ensure that every term in one polynomial is multiplied by every term in the other. For instance, if we take (x + 2)(x + 3), we can use distributivity to expand this to x^2 + 5x + 6. This application of distributivity not only provides the correct answer but also illustrates the interconnectedness of different algebraic concepts. Furthermore, distributivity is not limited to arithmetic and algebra; it also appears in other areas, such as set theory and logic. In set theory, the distributivity law applies to unions and intersections of sets. For example, A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) showcases how the intersection distributes over the union. Understanding this property can enhance our ability to manipulate sets effectively and solve problems involving them. In logic, distributivity helps in simplifying logical expressions. The distributive law in logic states that A and (B or C) can be rewritten as (A and B) or (A and C). This transformation is particularly useful in proofs and logical reasoning, allowing us to break down complex statements into simpler components. The importance of distributivity cannot be overstated. It serves as a bridge connecting various mathematical concepts and provides a framework for problem-solving. By mastering distributivity, students can enhance their mathematical skills and build a solid foundation for future studies in mathematics and related fields. In conclusion, distributivity is a key property in mathematics that facilitates the simplification and manipulation of expressions across multiple domains. Whether in arithmetic, algebra, set theory, or logic, understanding distributivity empowers individuals to approach problems with confidence and clarity. As students continue their mathematical journey, embracing the concept of distributivity will undoubtedly lead to greater success and comprehension in their studies.
在数学中,distributivity(分配律)的概念对于理解运算之间的相互作用至关重要。具体而言,它指的是允许我们将单个项分配到括号内的和或差中的属性。例如,当我们有一个表达式 a(b + c) 时,我们可以应用 distributivity 属性将其扩展为 ab + ac。这一原则不仅简化了计算,还为更复杂的代数运算奠定了基础。 distributivity 的重要性超越了基本算术;它在代数和微积分等多个数学分支中发挥着关键作用。在代数中,识别何时应用 distributivity 可以帮助更有效地解决方程。考虑一个方程,例如 3(x + 4) = 21。通过利用 distributivity 属性,我们可以将其改写为 3x + 12 = 21,从而更容易地孤立 x 并找到其值。 此外,distributivity 属性在多项式表达式中至关重要。在乘法多项式时,我们通常依赖 distributivity 来确保一个多项式中的每一项都与另一个多项式中的每一项相乘。例如,如果我们取 (x + 2)(x + 3),我们可以使用 distributivity 将其扩展为 x^2 + 5x + 6。这一 distributivity 的应用不仅提供了正确的答案,还说明了不同代数概念之间的相互联系。 此外,distributivity 不仅限于算术和代数;它还出现在集合论和逻辑等其他领域。在集合论中,distributivity 法则适用于集合的并和交。例如,A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 展示了交集如何分配到并集中。理解这一属性可以增强我们有效操作集合的能力,并解决涉及集合的问题。 在逻辑中,distributivity 有助于简化逻辑表达式。逻辑中的分配律指出 A 和 (B 或 C) 可以重写为 (A 和 B) 或 (A 和 C)。这一转变在证明和逻辑推理中尤其有用,使我们能够将复杂的陈述分解为更简单的组成部分。 distributivity 的重要性不容小觑。它作为连接各种数学概念的桥梁,为解决问题提供了框架。通过掌握 distributivity,学生可以提升他们的数学技能,为未来在数学及相关领域的学习打下坚实的基础。 总之,distributivity 是数学中的一个关键属性,促进了在多个领域对表达式的简化和操作。无论是在算术、代数、集合论还是逻辑中,理解 distributivity 能够使个人自信清晰地处理问题。随着学生继续他们的数学旅程,拥抱 distributivity 概念无疑会导致他们在学习中的更大成功和理解。
文章标题:distributivity的意思是什么
文章链接:https://www.liuxue886.cn/danci/341202.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论