divisible
简明释义
英[dɪˈvɪzəb(ə)l]美[dɪˈvɪzəb(ə)l]
adj. 可分的;可分割的
英英释义
能够被一个数字整除而不留下余数。 |
单词用法
可分割信用状 |
同义词
可分的 | A number is divisible by 2 if it can be divided evenly without a remainder. | 一个数如果可以被2整除,则它是可分的。 | |
可划分的 | 这个蛋糕可以被划分成相等的切片,供所有客人享用。 |
反义词
不可分割的 | The concept of indivisible rights is crucial in human rights discussions. | 不可分割的权利概念在人权讨论中至关重要。 | |
不可共享的 | 由于其性质,一些资源是不可共享的。 |
例句
他们是不可分离的。
2.Years that are divisible by 100 are not leap years, unless they're also divisible by 400.
发现可被100整除的年份不一定是闰年,除非它能被400整除。
3.The method can approximate the infinitely divisible cascades model of traffic.
该方法用于近似业务量的无穷可分层叠模型。
4.As a result, the body of the second if statement is executed when the value of the variable I is evenly divisible by 125.
因此,当变量i的值能被125整除时执行第二个if语句体。
5.This Guarantee is divisible, transferable and assignable without presentation of it to us.
这项担保可以分割、让与和过户,而无须向我们陈述。
6.Thirteen is not divisible by any even number.
很多人认为十三是个不吉利的数字。
7.That may be another reason why Chinese interest rates are divisible by nine: it is seen as an auspicious number.
这也许正是中国设定利率需被9除尽的另一原因:9被视为一个吉祥的数字。
8.The number 10 is divisible by 2.
数字10可以被2整除。
9.In mathematics, a number is divisible if it can be divided by another number without leaving a remainder.
在数学中,一个数字如果可以被另一个数字整除而不留余数,就称为可被整除。
10.To determine if a number is divisible by 3, you can sum the digits and see if that sum is divisible by 3.
要确定一个数字是否可以被3整除,你可以将其数字相加,看看这个和是否可以被3整除。
11.If a number ends in 0 or 5, it is divisible by 5.
如果一个数字以0或5结尾,它可以被5整除。
12.The teacher explained that even numbers are always divisible by 2.
老师解释说,偶数总是可以被2整除。
作文
Understanding the concept of numbers is fundamental to mathematics, and one important aspect of this is the idea of divisibility. A number is said to be divisible by another if, when divided, it results in a whole number without any remainder. This concept is not just a theoretical idea; it has practical applications in various fields such as computer science, engineering, and even in everyday life. For instance, when we are dividing a group of people into teams, we need to ensure that the total number of participants is divisible by the number of teams we want to create to avoid having any leftover individuals. To illustrate this further, let’s consider the number 12. The number 12 is divisible by 1, 2, 3, 4, 6, and 12 itself. This means that if you divide 12 by any of these numbers, you will get a whole number. For example, 12 divided by 3 equals 4, which is a whole number. On the other hand, if we try to divide 12 by 5, we find that it does not yield a whole number; instead, we get 2.4, which includes a decimal. Therefore, we can conclude that 12 is not divisible by 5. The rules of divisibility can be quite useful in simplifying fractions or determining factors of numbers. For example, understanding whether a number is divisible by 2 can help us identify even numbers. Similarly, if a number ends in 0 or 5, it is divisible by 5. These simple rules allow for quicker calculations and can be especially helpful during exams or timed tests where efficiency is key. In real-world scenarios, divisibility plays a crucial role in budgeting and financial planning. When managing finances, it is essential to allocate funds in a manner that is divisible by the number of expenses or categories we have. For instance, if you have $100 and need to divide it among 4 different expenses, you would want to ensure that the amount allocated to each expense is divisible by 4, resulting in $25 for each category. Moreover, the concept of divisibility extends beyond mere numbers. In programming, algorithms often require conditions that check whether a value is divisible by another. This is particularly relevant in loops and iterations where certain actions need to occur at intervals defined by divisible values. For example, a program might execute a specific function every third iteration, which inherently relies on the idea of divisibility. In conclusion, the concept of divisible numbers is not only a mathematical principle but also a practical tool that aids in various aspects of life. Whether we are organizing groups, managing finances, or writing computer programs, understanding how to determine if a number is divisible by another can significantly enhance our problem-solving skills. Thus, mastering the concept of divisibility is essential for anyone looking to excel in mathematics and its applications in the real world.
理解数字的概念是数学的基础,而其中一个重要方面就是可分性(divisibility)的概念。如果一个数字可以被另一个数字整除,结果是一个没有余数的整数,那么我们就说这个数字是可分的(divisible)。这个概念不仅仅是一个理论上的想法;它在计算机科学、工程甚至日常生活中都有实际应用。例如,当我们将一群人分成团队时,我们需要确保参与者的总人数能够被我们想要创建的团队数量整除,以避免有多余的人。 为了进一步说明这一点,让我们考虑数字12。数字12可以被1、2、3、4、6和12本身整除。这意味着如果你用这些数字去除12,你会得到一个整数。例如,12除以3等于4,这是一个整数。另一方面,如果我们尝试用5去除12,我们发现它不能得到一个整数;相反,我们得到2.4,其中包含小数。因此,我们可以得出结论,12不能被5整除。 可分性的规则在简化分数或确定数字的因子时非常有用。例如,了解一个数字是否可以被2整除可以帮助我们识别偶数。类似地,如果一个数字以0或5结尾,它就可以被5整除。这些简单的规则允许更快速的计算,并且在考试或限时测试中,效率至关重要。 在现实世界的场景中,可分性在预算和财务规划中起着关键作用。在管理财务时,必须以一种可分的方式分配资金,以便我们拥有的费用或类别数量。例如,如果你有100美元,需要将其分配给4个不同的费用,你会想要确保分配给每个费用的金额是可以被4整除的,从而使每个类别都为25美元。 此外,可分性(divisibility)的概念超越了单纯的数字。在编程中,算法通常需要检查一个值是否可以被另一个值整除的条件。这在循环和迭代中特别相关,在这些情况下,某些操作需要在由可分值定义的间隔内发生。例如,一个程序可能每三次迭代执行一个特定的函数,这本质上依赖于可分性(divisibility)的概念。 总之,数字的可分性(divisible)概念不仅是一个数学原理,也是一个实用工具,帮助我们在生活的各个方面。无论我们是在组织小组、管理财务还是编写计算机程序,理解如何判断一个数字是否可以被另一个数字整除,都能显著提高我们的解决问题的能力。因此,掌握可分性(divisibility)的概念对于任何希望在数学及其在现实世界中的应用中取得优异成绩的人来说都是至关重要的。
文章标题:divisible的意思是什么
文章链接:https://www.liuxue886.cn/danci/341678.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论