electrobiology
简明释义
英[ɪˌlɛk.trəˈbaɪ.əl.ə.dʒi]美[ɪˌlɛk.trəˈbaɪ.əl.ə.dʒi]
n. 电生物学
英英释义
单词用法
同义词
反义词
例句
1.The electrocardiogram is the external measure result of myocardial electrobiology.
心电图是心肌电生理的外部测量结果。
2.The electrocardiogram is the external measure result of myocardial electrobiology.
心电图是心肌电生理的外部测量结果。
3.The field of electrobiology 电生物学 is gaining traction in renewable energy research.
电生物学领域在可再生能源研究中越来越受到重视。
4.Researchers are exploring how electrobiology 电生物学 can enhance agricultural productivity.
研究人员正在探索电生物学如何提高农业生产力。
5.The application of electrobiology 电生物学 in medicine could lead to groundbreaking treatments.
电生物学在医学上的应用可能会导致突破性的治疗方法。
6.Innovations in electrobiology 电生物学 are paving the way for bioengineered solutions.
电生物学的创新为生物工程解决方案铺平了道路。
7.Understanding electrobiology 电生物学 is crucial for developing new bio-sensors.
理解电生物学对于开发新的生物传感器至关重要。
作文
The field of electrobiology is an emerging area of research that explores the intricate relationship between electrical phenomena and biological systems. As we delve deeper into the study of living organisms, it becomes increasingly evident that electricity plays a vital role in various biological processes. From the way our neurons communicate to the functioning of our hearts, electrobiology offers insights that could revolutionize medicine and biotechnology. At its core, electrobiology investigates how electrical signals influence cellular activities. For example, when neurons transmit information, they do so through electrical impulses known as action potentials. These impulses are essential for the proper functioning of the nervous system, enabling us to react to stimuli, control our movements, and even form memories. By understanding the mechanisms behind these electrical signals, researchers can develop better treatments for neurological disorders such as epilepsy and Parkinson's disease. Moreover, electrobiology also examines the role of electricity in muscle contraction. When we move, our muscles rely on electrical signals from the nervous system to contract and relax. This relationship is crucial not only for voluntary movements but also for involuntary ones, such as the beating of the heart. Innovations in this area could lead to advances in cardiac care, potentially improving the lives of millions suffering from heart conditions. In addition to its medical implications, electrobiology has significant applications in environmental science. Researchers are exploring how electrical signals can influence microbial communities in soil and water. This knowledge could lead to better strategies for bioremediation, where microorganisms are used to clean up contaminated environments. Understanding the electrical interactions within these communities could enhance their efficiency and effectiveness. Furthermore, the integration of electrobiology with technology has opened new avenues for bioengineering. For instance, scientists are developing bioelectronic devices that can interface with biological tissues. These devices have the potential to monitor health conditions in real-time or even stimulate tissue regeneration. The combination of biology and electronics represents a frontier of innovation that could reshape healthcare and improve patient outcomes. As we continue to explore the vast landscape of electrobiology, ethical considerations must also be addressed. The manipulation of electrical signals in biological systems raises questions about the long-term effects and potential risks involved. It is crucial for researchers and policymakers to collaborate in establishing guidelines that ensure the safe and responsible use of these technologies. In conclusion, electrobiology is a fascinating and rapidly evolving field that bridges the gap between biology and electrical engineering. Its applications span across medicine, environmental science, and technology, promising to unlock new possibilities for understanding life itself. As we advance our knowledge in this area, we must remain vigilant about the ethical implications and strive for a future where the benefits of electrobiology can be harnessed safely and effectively for the betterment of society.
电生物学是一个新兴的研究领域,探索电现象与生物系统之间的复杂关系。随着我们对生物体研究的深入,越来越明显的是电力在各种生物过程中发挥着至关重要的作用。从我们的神经元如何交流到心脏的功能,电生物学提供了可能彻底改变医学和生物技术的见解。 在其核心,电生物学研究电信号如何影响细胞活动。例如,当神经元传递信息时,它们通过称为动作电位的电冲动进行。这些冲动对于神经系统的正常运作至关重要,使我们能够对刺激做出反应、控制运动,甚至形成记忆。通过理解这些电信号背后的机制,研究人员可以开发更好的治疗方法来应对癫痫和帕金森病等神经系统疾病。 此外,电生物学还研究电力在肌肉收缩中的作用。当我们移动时,我们的肌肉依靠来自神经系统的电信号进行收缩和放松。这种关系不仅对自愿运动至关重要,对心脏的跳动等非自愿运动也同样重要。在这一领域的创新可能会带来心脏护理的进步,潜在地改善数百万心脏病患者的生活。 除了医学意义,电生物学在环境科学中也具有重要应用。研究人员正在探索电信号如何影响土壤和水中的微生物群落。这一知识可能导致更好的生物修复策略,即利用微生物清理污染环境。理解这些群落中的电气相互作用可能提高它们的效率和效果。 此外,电生物学与技术的结合开辟了生物工程的新途径。例如,科学家们正在开发能够与生物组织接口的生物电子设备。这些设备有潜力实时监测健康状况,甚至刺激组织再生。生物与电子的结合代表了创新的前沿,可能会重塑医疗保健并改善患者的结果。 随着我们继续探索电生物学的广阔领域,伦理考虑也必须得到重视。在生物系统中操控电信号引发了关于长期影响和潜在风险的问题。研究人员和政策制定者必须合作,建立确保安全和负责任使用这些技术的指导方针。 总之,电生物学是一个迷人且快速发展的领域,连接着生物学和电气工程之间的桥梁。其应用涵盖医学、环境科学和技术,承诺揭示理解生命本质的新可能性。随着我们在这一领域知识的不断进步,我们必须对伦理影响保持警惕,努力实现一个能够安全有效利用电生物学惠及社会的未来。
文章标题:electrobiology的意思是什么
文章链接:https://www.liuxue886.cn/danci/347707.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论