electrogenesis
简明释义
英[ɪˌlektrəʊˈdʒenɪsɪs]美[ɪˌlektroʊˈdʒenəsɪs]
n. 产电
英英释义
Electrogenesis refers to the process by which electrical energy is produced, especially in biological systems such as in cells or tissues. | 电生成功能指的是产生电能的过程,尤其是在细胞或组织等生物系统中。 |
单词用法
电生成功能 | |
电生成功能机制 | |
在电生成功能的背景下 | |
电生成功能的研究 | |
电生成功能的作用 | |
微生物中的电生成功能 |
同义词
反义词
电解 | Electrolysis is commonly used in water splitting to produce hydrogen. | 电解常用于水分解以生产氢气。 | |
去极化 | Depolarization of the neuron leads to the generation of an action potential. | 神经元的去极化会导致动作电位的产生。 |
例句
1.The invention relates to a method for acclimating and separating electricigens by electrochemistry and high efficient electrogenesis flora obtained in the method.
本发明涉及一种电化学驯化、分离产电微生物的方法及通过该方法所 获得的高效产电菌群。
2.The invention relates to a method for acclimating and separating electricigens by electrochemistry and high efficient electrogenesis flora obtained in the method.
本发明涉及一种电化学驯化、分离产电微生物的方法及通过该方法所 获得的高效产电菌群。
3.The effect of its being inoculated with anaerobic sludge on the electrogenesis capacity of glucose simulated wastewater has been investigated.
另外,还对以水及好氧污泥作为电池阴极时系统的产电性能进行了对比。
4.The process of electrogenesis 电生生成 in bacteria can lead to the development of bioelectricity.
细菌中的electrogenesis 电生生成过程可以导致生物电的产生。
5.Researchers are studying electrogenesis 电生生成 to improve energy production from microbial fuel cells.
研究人员正在研究electrogenesis 电生生成以提高微生物燃料电池的能量生产。
6.The phenomenon of electrogenesis 电生生成 is crucial for understanding how certain organisms generate electricity.
理解某些生物如何产生电的现象electrogenesis 电生生成至关重要。
7.In the field of biotechnology, electrogenesis 电生生成 has potential applications in sustainable energy.
在生物技术领域,electrogenesis 电生生成在可持续能源方面具有潜在应用。
8.The study of electrogenesis 电生生成 can help develop new methods for waste treatment.
对electrogenesis 电生生成的研究可以帮助开发新的废物处理方法。
作文
The phenomenon of electrogenesis refers to the biological process through which electrical energy is generated in living organisms. This fascinating mechanism plays a crucial role in various biological systems, particularly in the field of bioelectricity. Understanding electrogenesis can provide insights into how organisms communicate, respond to stimuli, and maintain homeostasis. In essence, electrogenesis is the foundation of the electrical activity observed in nerves and muscles, enabling them to function properly. In many aquatic organisms, such as electric fish, electrogenesis is particularly pronounced. These species have specialized cells known as electrocytes that generate electric fields, allowing them to navigate their environment, hunt prey, and communicate with one another. The study of these animals has opened new avenues for research into the evolutionary adaptations that facilitate electrogenesis. For instance, scientists have discovered that the ability to produce electric fields may have evolved independently in different lineages, showcasing the versatility and importance of this phenomenon in the animal kingdom. Moreover, electrogenesis is not limited to aquatic life. Terrestrial organisms, including humans, also rely on electrical signals for various physiological processes. In humans, electrogenesis occurs within neurons, where action potentials are generated and transmitted along nerve fibers. This electrical activity is essential for muscle contraction, sensory perception, and cognitive functions. Disorders related to electrogenesis, such as epilepsy or cardiac arrhythmias, highlight the significance of maintaining proper electrical signaling within the body. Research into electrogenesis has far-reaching implications for medicine and biotechnology. By understanding the mechanisms underlying this process, scientists can develop innovative treatments for conditions caused by dysfunctional electrical activity. For example, therapies targeting electrogenesis pathways may improve outcomes for patients with neurological disorders or heart diseases. Furthermore, advancements in bioengineering have led to the creation of devices that harness electrogenesis for therapeutic purposes, such as deep brain stimulators that alleviate symptoms of Parkinson's disease. In conclusion, electrogenesis is a vital process that underpins the electrical activity in living organisms, influencing their behavior and physiological functions. From electric fish to human neurology, the study of electrogenesis reveals the intricate connections between biology and electricity. As we continue to explore this captivating field, we can anticipate new discoveries that will enhance our understanding of life itself and lead to novel medical advancements. The significance of electrogenesis extends beyond mere curiosity; it is a key component of the biological systems that sustain life, making it an essential area of study for future generations of scientists.
电生理这一现象指的是生物体内产生电能的生物过程。这一迷人的机制在各种生物系统中发挥着至关重要的作用,特别是在生物电领域。理解电生理可以深入了解生物体如何进行交流、对刺激作出反应以及维持稳态。从本质上讲,电生理是神经和肌肉观察到的电活动的基础,使它们能够正常运作。 在许多水生生物中,例如电鱼,电生理尤为显著。这些物种具有称为电细胞的特殊细胞,能够产生电场,使它们能够在环境中导航、捕猎猎物并相互交流。对这些动物的研究开辟了新的研究途径,探索促进电生理的进化适应。例如,科学家发现,产生电场的能力可能在不同谱系中独立进化,展示了这一现象在动物王国中的多样性和重要性。 此外,电生理并不仅限于水生生物。陆生生物,包括人类,也依赖电信号来进行各种生理过程。在人类中,电生理发生在神经元内部,动作电位的生成和沿神经纤维的传递。这种电活动对于肌肉收缩、感知和认知功能至关重要。与电生理相关的疾病,如癫痫或心律失常,突显了维持身体内正常电信号的重要性。 对电生理的研究具有深远的医学和生物技术意义。通过理解这一过程背后的机制,科学家可以开发创新的治疗方法,以应对由功能失调的电活动引起的疾病。例如,针对电生理通路的疗法可能改善神经系统疾病或心脏病患者的预后。此外,生物工程的进步导致了利用电生理进行治疗目的的设备的创造,例如减轻帕金森病症状的深脑刺激器。 总之,电生理是支撑生物体内电活动的重要过程,影响着它们的行为和生理功能。从电鱼到人类神经学,电生理的研究揭示了生物学与电力之间的复杂联系。随着我们继续探索这一迷人的领域,我们可以期待新的发现将增强我们对生命本身的理解,并带来新的医学进展。电生理的重要性不仅仅是好奇心;它是维持生命的生物系统的关键组成部分,使其成为未来科学家研究的重要领域。
文章标题:electrogenesis的意思是什么
文章链接:https://www.liuxue886.cn/danci/347767.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论