electron
简明释义
n. 电子
复 数 e l e c t r o n s
英英释义
A subatomic particle with a negative electric charge, found in all atoms and acting as a primary carrier of electricity in solids. | 一种带负电荷的亚原子粒子,存在于所有原子中,并作为固体中电流的主要载体。 |
单词用法
电子显微镜 | |
电子显微镜学,电子显微镜 |
同义词
反义词
正电子 | 正电子是电子的反物质对称体。 | ||
质子 | Protons are found in the nucleus of an atom, whereas electrons orbit around it. | 质子位于原子核中,而电子则围绕其旋转。 |
例句
1.Here's the pneumonic I mentioned for writing the electron configuration and getting those orbital energies in the right order.
这是我提到的肺,用于写电子构型,并以正确的顺序得到轨道能量。
我们有了电子。
3.This represents the free electron.
这就是自由电子。
4.We know that because the sulfur and the chlorine in the oxygen have different average valence electron energies, they'll have different electron affinities.
我们都知道,因为氧气中的硫和氯具有不同的平均价电子能,它们的电子亲和力也不同。
5.When we talk about orbitals in multi-electron atoms, they're actually lower in energy than the corresponding H atom orbitals.
当我们讨论多电子原子的轨道时,它们的能量实际上比对应的氢原子轨道要低。
就是一单位的电子伏特。
7.When the researchers looked at the seedling tissues under an electron microscope, however, they could see the nanotubes had actually entered living cells.
然而,当研究者在电子显微镜下观察种子组织的时候,他们能够看到纳米管确实已经进入了活细胞。
8.They are the radius of the orbit, the energy of the system and the velocity of the electron, and I am just going to present you the solutions.
它们是轨道的半径,系统的能量以及电子的速度,我接下来给你们展示解法。
9.The electron microscope uses a beam of electrons to produce images at high magnifications.
电子显微镜利用一束电子产生高倍放大的影像。
10.An electron 电子 is a fundamental particle in physics.
电子是物理学中的基本粒子。
11.When an electron 电子 moves through a conductor, it creates an electric current.
当一个电子在导体中移动时,它会产生电流。
12.The flow of electrons 电子 is what powers electronic devices.
电子的流动是驱动电子设备的原因。
13.In a vacuum tube, electrons 电子 are emitted from a heated filament.
在真空管中,电子是从加热的灯丝发射出来的。
14.Every atom contains electrons 电子 that orbit the nucleus.
每个原子都包含围绕原子核旋转的电子。
作文
The study of the fundamental particles that make up our universe is a fascinating journey into the world of physics. One of the most important particles in this realm is the electron, which plays a crucial role in the structure of atoms and the nature of electricity. The electron is a subatomic particle with a negative electric charge, and it is one of the primary building blocks of matter. Understanding the electron is essential for grasping the principles of chemistry and physics, as it influences how atoms interact with each other. Electrons are found in the outer regions of an atom, surrounding the nucleus, which contains protons and neutrons. The arrangement of electrons in an atom determines its chemical properties and how it will bond with other atoms. For instance, elements like oxygen and hydrogen combine to form water because of the way their electrons interact. This interaction is governed by the laws of quantum mechanics, which describe the behavior of particles at the atomic level. In addition to their role in chemical bonding, electrons are also fundamental to the flow of electricity. When electrons move through a conductor, such as a metal wire, they create an electric current. This principle is the basis for countless technologies, from simple light bulbs to complex computers. The ability to control the movement of electrons has led to the development of modern electronics, enabling us to communicate, compute, and entertain in ways that were unimaginable just a century ago. Moreover, the study of electrons extends beyond traditional physics and chemistry; it has profound implications in the field of quantum computing. Quantum computers utilize the unique properties of electrons to perform calculations at speeds far exceeding those of classical computers. By manipulating electrons in superposition states, quantum computers can solve complex problems more efficiently, potentially revolutionizing fields such as cryptography and materials science. The significance of the electron cannot be overstated. It is not just a particle; it is a key to understanding the universe's workings. From the formation of atoms to the technology that powers our daily lives, electrons are everywhere. They are integral to both the microscopic interactions that govern chemical reactions and the macroscopic phenomena we observe in our everyday experiences. In conclusion, the electron is a remarkable particle that serves as a cornerstone of modern science. Its influence spans multiple disciplines, including physics, chemistry, and technology. As we continue to explore the mysteries of the universe, the electron will undoubtedly remain a focal point of research and discovery. Understanding this tiny yet powerful particle opens doors to new innovations and deeper insights into the fabric of reality. The more we learn about electrons, the more we realize how interconnected everything truly is, from the smallest atoms to the vast cosmos beyond.
对构成我们宇宙的基本粒子的研究是一次迷人的物理之旅。在这个领域中,最重要的粒子之一就是电子,它在原子的结构和电的性质中发挥着至关重要的作用。电子是一种带负电荷的亚原子粒子,是物质的主要构建块之一。理解电子对于掌握化学和物理的原理至关重要,因为它影响着原子之间的相互作用。 电子位于原子的外部区域,围绕着包含质子和中子的原子核。原子中电子的排列决定了其化学性质以及如何与其他原子结合。例如,氧和氢等元素因其电子的相互作用而结合形成水。这种相互作用受量子力学法则的支配,量子力学描述了原子水平上粒子的行为。 除了在化学键合中的作用外,电子对于电流的流动也至关重要。当电子通过导体(如金属线)移动时,它们会产生电流。这一原理是无数技术的基础,从简单的灯泡到复杂的计算机。控制电子的运动能力使现代电子技术得以发展,使我们能够以一种在一个世纪前无法想象的方式进行交流、计算和娱乐。 此外,电子的研究超越了传统的物理和化学领域;它在量子计算领域具有深远的意义。量子计算机利用电子的独特性质以远超经典计算机的速度进行计算。通过操纵处于叠加态的电子,量子计算机能够更高效地解决复杂问题,潜在地彻底改变密码学和材料科学等领域。 电子的重要性不容小觑。它不仅仅是一个粒子;它是理解宇宙运作的关键。从原子的形成到驱动我们日常生活的技术,电子无处不在。它们是支配化学反应的微观相互作用和我们在日常经验中观察到的宏观现象的核心。 总之,电子是一种了不起的粒子,是现代科学的基石。它的影响跨越多个学科,包括物理、化学和技术。随着我们继续探索宇宙的奥秘,电子无疑将始终是研究和发现的焦点。理解这个微小而强大的粒子为新的创新和对现实本质的更深刻见解打开了大门。我们对电子了解得越多,就越能意识到从最小的原子到浩瀚的宇宙之间的一切是多么紧密相连。
文章标题:electron的意思是什么
文章链接:https://www.liuxue886.cn/danci/347889.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论