electrophoretic
简明释义
英[ɪˌlektrəfəˈretɪk]美[ɪˈlektrofɔˈretɪk]
adj. 电泳的
英英释义
Relating to or denoting the movement of charged particles in a fluid under the influence of an electric field. | 与在电场影响下流体中带电粒子的运动相关或表示的。 |
单词用法
电镀;电泳涂敷;电泳喷涂 | |
电泳淀积 |
同义词
反义词
例句
1.The technological characteristics of ED-5 electrophoretic paint are introduced in comparison with those of ED-4 electrophoretic paint.
介绍了ED - 5电泳漆的技术特点,并与ED - 4电泳漆的技术特点进行了比较。
2.The UV curable cathodic electrophoretic paint prepared by polyurethane acrylate showed good properties.
所得的聚氨酯丙烯酸酯光固化阴极电泳漆综合性能良好。
3.And, later this year, an electrophoretic reader that is built the LCD way, but on plastic, rather than on glass, will also be launched to take them on.
同时,今年晚些时候,一种以lcd显示方式来显示的电泳型阅读器将上市,显示屏用塑料制成,而不是用玻璃。
4.Ink and a handful of rivals, including SiPix and Bridgestone, are developing colour electrophoretic displays.
Ink与几位竞争对手,包括硒峰(SiPix)与普利司通(Bridgestone),正在开发彩色电泳显示屏。
5.Its electrophoretic feature is similar to that of extensin-1 from wounded carrot root tissue.
它的电泳特征类似于受伤的胡萝卜根组织中的伸展蛋白1号。
6.The main reasons of depositing in electrophoretic paint and the treatment methods have been discussed.
介绍了电泳漆液沉淀产生的主要原因及处理方法。
7.Reaction condition of the synthesis of resin was investigated, and properties of the obtained electrophoretic coating were tested.
探讨了合成树脂的反应条件,并对所得阴极电泳涂料的性能进行了测试。
8.The laboratory conducted an electrophoretic 电泳的 analysis to separate the proteins in the sample.
实验室进行了电泳的分析,以分离样品中的蛋白质。
9.Researchers used electrophoretic 电泳的 methods to study the genetic variations in the population.
研究人员使用电泳的方法研究人群中的遗传变异。
10.In forensic science, electrophoretic 电泳的 techniques are essential for DNA profiling.
在法医学中,电泳的技术对于DNA分析至关重要。
11.The electrophoretic 电泳的 separation of nucleic acids allows for better visualization on gels.
核酸的电泳的分离使得在凝胶上更好地可视化。
12.An electrophoretic 电泳的 process can help identify different isoenzymes in a sample.
一个电泳的过程可以帮助识别样品中的不同同工酶。
作文
In the field of biochemistry and molecular biology, various techniques are employed to analyze and separate biological molecules. One such technique is called electrophoretic separation. This method utilizes the principles of electrophoresis, which is the movement of charged particles in a fluid under the influence of an electric field. The electrophoretic process is essential for many laboratory applications, including DNA analysis, protein purification, and RNA separation. Electrophoresis works by applying an electric current to a gel or liquid medium containing the molecules of interest. When the electric field is applied, negatively charged molecules, such as DNA and proteins, migrate towards the positive electrode, while positively charged molecules move towards the negative electrode. This movement allows for the separation of different types of molecules based on their size, shape, and charge. The efficiency of this separation can be enhanced by adjusting the composition of the gel and the strength of the electric field. One of the most common forms of electrophoretic separation is agarose gel electrophoresis, which is widely used for analyzing nucleic acids. In this technique, agarose, a polysaccharide derived from seaweed, is used to create a gel matrix. The gel acts as a molecular sieve, allowing smaller DNA fragments to move more quickly through the pores than larger ones. As a result, when an electric current is applied, DNA fragments of different sizes can be separated and visualized after staining. This method is instrumental in applications such as genetic fingerprinting and cloning. Another important application of electrophoretic techniques is in the analysis of proteins through polyacrylamide gel electrophoresis (PAGE). This method is particularly useful for separating proteins based on their molecular weight. Similar to agarose gel electrophoresis, PAGE uses a gel matrix, but it employs polyacrylamide, which provides finer resolution for protein separation. The separated proteins can then be stained and analyzed, providing insights into protein expression levels, post-translational modifications, and interactions. The versatility of electrophoretic methods extends beyond simple separation. Advanced techniques, such as two-dimensional electrophoresis, combine isoelectric focusing and SDS-PAGE to achieve high-resolution protein separation. In this method, proteins are first separated based on their isoelectric point (pI) and then further separated by size. This comprehensive approach allows researchers to analyze complex protein mixtures and identify specific proteins of interest. Furthermore, electrophoretic techniques are not limited to laboratory research; they also have clinical applications. For instance, serum protein electrophoresis is routinely performed in clinical laboratories to diagnose and monitor various diseases. By separating serum proteins, clinicians can detect abnormalities that may indicate conditions such as multiple myeloma or liver disease. In conclusion, the electrophoretic technique is a powerful tool in the fields of biochemistry and molecular biology. Its ability to separate and analyze biomolecules has significant implications for research and clinical diagnostics. As technology advances, we can expect further enhancements in electrophoretic methods, leading to even greater precision and efficiency in the study of biological systems. Understanding the principles and applications of electrophoretic separation is crucial for anyone working in the life sciences, as it continues to play a vital role in advancing our knowledge of molecular biology.
在生物化学和分子生物学领域,采用各种技术来分析和分离生物分子。其中一种技术被称为电泳分离。该方法利用电泳的原理,即带电粒子在电场影响下在液体中移动。电泳过程对于许多实验室应用至关重要,包括DNA分析、蛋白质纯化和RNA分离。 电泳通过对含有目标分子的凝胶或液体介质施加电流来工作。当施加电场时,带负电荷的分子(如DNA和蛋白质)向正电极迁移,而带正电荷的分子则向负电极移动。这种运动使得不同类型的分子能够根据其大小、形状和电荷进行分离。通过调整凝胶的成分和电场的强度,可以增强这种分离的效率。 最常见的电泳分离形式之一是琼脂糖凝胶电泳,这种方法广泛用于分析核酸。在这项技术中,琼脂糖是一种从海藻中提取的多糖,用于创建凝胶基质。该凝胶作为分子筛,允许较小的DNA片段比较大的片段更快地通过孔隙。因此,当施加电流时,不同大小的DNA片段可以被分离并在染色后可视化。这种方法在遗传指纹和克隆等应用中至关重要。 电泳技术的另一个重要应用是通过聚丙烯酰胺凝胶电泳(PAGE)分析蛋白质。这种方法特别适用于根据分子量分离蛋白质。与琼脂糖凝胶电泳类似,PAGE使用凝胶基质,但它采用聚丙烯酰胺,提供更细致的蛋白质分离分辨率。分离后的蛋白质可以被染色和分析,从而提供关于蛋白质表达水平、翻译后修饰和相互作用的见解。 电泳方法的多样性不仅限于简单的分离。先进的技术,如二维电泳,将等电聚焦和SDS-PAGE结合起来,以实现高分辨率的蛋白质分离。在此方法中,首先根据蛋白质的等电点(pI)进行分离,然后按大小进一步分离。这种综合方法使研究人员能够分析复杂的蛋白质混合物并识别特定的感兴趣蛋白质。 此外,电泳技术不仅限于实验室研究;它们还具有临床应用。例如,血清蛋白电泳在临床实验室中常规进行,以诊断和监测各种疾病。通过分离血清蛋白,临床医生可以检测出可能表明多发性骨髓瘤或肝病等疾病的异常情况。 总之,电泳技术是生物化学和分子生物学领域的一种强大工具。它分离和分析生物大分子的能力对研究和临床诊断具有重要意义。随着技术的进步,我们可以期待电泳方法的进一步增强,从而在生物系统研究中实现更高的精确度和效率。理解电泳分离的原理和应用对于任何从事生命科学工作的人来说都至关重要,因为它继续在推动我们对分子生物学的认识中发挥重要作用。
文章标题:electrophoretic的意思是什么
文章链接:https://www.liuxue886.cn/danci/347923.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论