electrovalent
简明释义
英[ɪˌlektrəˈveɪlənt]美[iːˌlektroʊˈveɪlənt]
adj. 电价的
英英释义
Relating to a type of chemical bond formed by the electrostatic attraction between oppositely charged ions. | 与通过相反电荷离子之间的静电吸引形成的化学键类型相关。 |
单词用法
电离特性 | |
电离性质 | |
形成电离键 | |
电离物质 |
同义词
反义词
共价的 | Covalent bonds involve the sharing of electron pairs between atoms. | 共价键涉及原子之间电子对的共享。 | |
分子的 | 分子化合物是由共价键形成的。 |
例句
1.The electrovalent bond weakens and the covalent bond strengthen between manganese and oxygen due to ion polarization effect, which makes the spinel structure more stable.
锂离子的静电作用和极化作用,使锰氧之间的离子键成分减小,共价键成分增加,整个尖晶石骨架结构更加稳定。
2.The electrovalent bond weakens and the covalent bond strengthen between manganese and oxygen due to ion polarization effect, which makes the spinel structure more stable.
锂离子的静电作用和极化作用,使锰氧之间的离子键成分减小,共价键成分增加,整个尖晶石骨架结构更加稳定。
3.Sodium chloride is a classic example of an electrovalent 电离键 compound.
氯化钠是一个经典的电离键化合物的例子。
4.In electrovalent 电离键 bonding, one atom donates an electron while another accepts it.
在电离键结合中,一个原子捐赠一个电子,而另一个原子接受它。
5.The formation of electrovalent 电离键 compounds usually occurs between metals and nonmetals.
通常,电离键化合物的形成发生在金属和非金属之间。
6.Calcium oxide is formed through electrovalent 电离键 interactions.
氧化钙是通过电离键相互作用形成的。
7.The electrovalent 电离键 nature of ionic compounds gives them high melting points.
电离键的性质使离子化合物具有高熔点。
作文
In the realm of chemistry, the term electrovalent refers to a type of bond that is formed through the transfer of electrons from one atom to another. This process results in the formation of charged ions, which are held together by the electrostatic forces of attraction between oppositely charged particles. The concept of electrovalent bonding is crucial for understanding how various compounds are formed and how they behave in different environments. To illustrate this, let us consider the formation of sodium chloride, commonly known as table salt. Sodium (Na) has one electron in its outer shell, while chlorine (Cl) has seven electrons. In order to achieve a stable electronic configuration, sodium can transfer its single electron to chlorine. When this transfer occurs, sodium becomes a positively charged ion (Na⁺), and chlorine becomes a negatively charged ion (Cl⁻). The resulting electrostatic attraction between these two ions creates a strong electrovalent bond, resulting in the formation of NaCl. The significance of electrovalent bonds extends beyond just the formation of simple ionic compounds. These bonds play a fundamental role in the properties of materials. For instance, compounds that exhibit electrovalent bonding typically have high melting and boiling points due to the strong forces holding the ions together. This characteristic makes them suitable for various applications, such as in the manufacturing of ceramics and glass, where high-temperature stability is essential. Moreover, electrovalent compounds are usually soluble in water and can conduct electricity when dissolved or melted. This property is particularly important in biological systems, where ionic compounds dissociate into their respective ions in solution, allowing for the transmission of electrical signals in nerve cells and muscle tissues. The ability of electrovalent compounds to facilitate electrical conduction is also harnessed in various industrial processes, such as electrolysis, where ionic compounds are broken down into their constituent elements using an electric current. Additionally, the interaction between electrovalent bonds and other types of chemical bonds, such as covalent and metallic bonds, can lead to the formation of complex structures. For example, in many minerals, electrovalent bonds work in conjunction with covalent bonds to create intricate lattice structures that define the mineral's physical properties. Understanding these interactions is vital for fields such as geology and materials science, where the manipulation of these bonds can lead to the development of new materials with desirable characteristics. In conclusion, the term electrovalent encompasses a fundamental aspect of chemistry that describes the nature of ionic bonding. By transferring electrons and forming charged ions, electrovalent bonds not only contribute to the formation of various compounds but also influence their physical and chemical properties. As we continue to explore the complexities of chemical interactions, the importance of electrovalent bonding remains a key focus, revealing insights into both natural phenomena and technological advancements.
在化学领域,术语electrovalent指的是通过将电子从一个原子转移到另一个原子而形成的一种键。这一过程导致带电离子的形成,这些离子因相反电荷粒子之间的静电吸引力而结合在一起。electrovalent键的概念对理解各种化合物的形成及其在不同环境中的行为至关重要。 为了说明这一点,让我们考虑氯化钠的形成,通常被称为食盐。钠(Na)在其外层电子中有一个电子,而氯(Cl)则有七个电子。为了获得稳定的电子配置,钠可以将其单个电子转移给氯。当这种转移发生时,钠变成一个带正电的离子(Na⁺),而氯变成一个带负电的离子(Cl⁻)。这两个离子之间的静电吸引力形成了强大的electrovalent键,从而产生了NaCl。 electrovalent键的重要性不仅仅在于简单离子化合物的形成。这些键在材料的性质中扮演着基本角色。例如,表现出electrovalent键的化合物通常具有高熔点和沸点,因为强大的力将离子结合在一起。这一特性使它们适合用于各种应用,如陶瓷和玻璃的制造,其中高温稳定性至关重要。 此外,electrovalent化合物通常可溶于水,并且在溶解或熔化时能够导电。这一特性在生物系统中尤为重要,在这些系统中,离子化合物在溶液中解离为各自的离子,从而允许在神经细胞和肌肉组织中传递电信号。electrovalent化合物促进电导的能力也被利用于各种工业过程,例如电解,其中离子化合物使用电流被分解为其组成元素。 此外,electrovalent键与其他类型的化学键(如共价键和金属键)之间的相互作用可以导致复杂结构的形成。例如,在许多矿物中,electrovalent键与共价键协同工作,形成定义矿物物理性质的复杂晶格结构。理解这些相互作用对地质学和材料科学等领域至关重要,在这些领域中,这些键的操控可以导致新材料的发展,具有所需的特性。 总之,术语electrovalent涵盖了描述离子键本质的化学基本方面。通过转移电子并形成带电离子,electrovalent键不仅有助于各种化合物的形成,还影响其物理和化学性质。随着我们继续探索化学相互作用的复杂性,electrovalent键的重要性仍然是一个关键焦点,揭示了自然现象和技术进步的见解。
文章标题:electrovalent的意思是什么
文章链接:https://www.liuxue886.cn/danci/347988.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论