ellipsoidal
简明释义
adj. 椭圆体的
英英释义
与椭圆形状相关或具有椭圆形状的。 | |
Describing a three-dimensional object that resembles an elongated sphere. | 描述一种类似于拉长球体的三维物体。 |
单词用法
椭圆形封头 |
同义词
椭圆形的 | 行星的轨道是椭圆形的。 | ||
椭圆的 | 她在纸上画了一个椭圆形。 | ||
卵形的 | 这个蛋呈卵形外观。 | ||
圆形的 | 这张桌子是圆形的,适合放在餐厅里。 |
反义词
球形的 | 地球通常被近似为球形。 | ||
立方体的 | 骰子的形状是立方体的,这使得它们易于掷出。 |
例句
1.It consists of a base unit and handset embedded together in a single and continuous ellipsoidal form factor.
它由底座及与之构成一个椭圆形的受话器组成。
2.The chain-like structures consist of two parts: the ellipsoidal part and the linear part.
该链状结构包含两个部分:椭球部分和直线部分。
3.The ellipsoidal deformation of reflectance in the studied area was characterized by extend type or flaser type strain.
测区内煤的镜质组反射率椭球体的变形特征属于拉长型应变和压扁型应变。
4.Lacking gas and dust to form new stars, their randomly swarming older stars, give them an ellipsoidal (egg-like) shape.
气体尘埃缺乏,不足以形成新恒星,年老恒星随机挤在一起形成椭圆形状(或蛋形)。
5.To improve the quality of the spectral instruments, two ellipsoidal mirrors and an ellipsoidal aberration-reduced grating are used.
为提高分光仪器的性能,采用两个椭球面镜和一个椭球面消像差光栅分光。
6.This spinning area surrounding the event horizon is called the ergosphere and has an ellipsoidal shape.
这活动视界周围旋转的区域是所谓的能层而具有椭圆形。
7.The planet orbits the sun in an ellipsoidal 椭球形的 path.
这个行星以一种椭球形的轨道绕太阳运行。
8.In geometry, an ellipsoidal 椭球形的 shape is defined by three axes.
在几何学中,椭球形的形状由三个轴定义。
9.The satellite's orbit is slightly ellipsoidal 椭球形的 due to gravitational influences.
由于重力影响,卫星的轨道略呈椭球形的。
10.An ellipsoidal 椭球形的 tank can hold more liquid than a cylindrical one.
一个椭球形的水箱比圆柱形水箱能容纳更多液体。
11.The model of the Earth is often represented as an ellipsoidal 椭球形的 figure.
地球的模型通常被表示为一个椭球形的图形。
作文
In the realm of geometry, shapes play a crucial role in understanding the physical world around us. Among these shapes, the ellipsoidal shape stands out due to its unique properties and applications. An ellipsoidal object can be defined as a three-dimensional figure that resembles an elongated sphere, characterized by its smooth and continuous surface. This geometric form is not only fascinating in mathematics but also has significant implications in various fields such as physics, engineering, and astronomy. One of the most common examples of an ellipsoidal shape is the Earth itself. While we often think of our planet as a perfect sphere, it is actually an oblate spheroid, which is a specific type of ellipsoidal shape. The equatorial diameter of the Earth is slightly larger than its polar diameter, resulting in a shape that is flattened at the poles and bulging at the equator. This ellipsoidal nature of the Earth affects many aspects of life, including gravity, climate, and satellite navigation systems. In engineering, ellipsoidal shapes are frequently used in the design of various structures and components. For instance, ellipsoidal tanks are commonly employed in the storage of liquids and gases. The ellipsoidal design allows for a more efficient distribution of stress across the surface of the tank, making it stronger and more resistant to pressure. This is particularly important in industries where safety and reliability are paramount. Furthermore, the concept of ellipsoidal shapes extends beyond mere physical objects; it also finds relevance in data visualization and modeling. In statistics, an ellipsoidal contour can represent confidence regions for multivariate data. By visualizing data points within an ellipsoidal boundary, researchers can better understand the relationships and variances among different variables. This application is especially useful in fields such as machine learning and data science, where comprehending complex datasets is essential. In astronomy, ellipsoidal shapes are critical in understanding the orbits of celestial bodies. The paths of planets, moons, and satellites often follow ellipsoidal trajectories due to the gravitational forces acting upon them. This knowledge is vital for space exploration and navigation, as accurately predicting the movement of these bodies requires a solid grasp of their ellipsoidal orbits. In conclusion, the ellipsoidal shape is more than just a mathematical concept; it is a fundamental aspect of our universe that influences various scientific disciplines. From the shape of our planet to the design of engineering structures and the analysis of data, understanding ellipsoidal forms enhances our comprehension of the world. As we continue to explore and innovate, the significance of ellipsoidal shapes will undoubtedly remain a key element in our quest for knowledge and understanding.
在几何学的领域中,形状在理解我们周围的物理世界中扮演着至关重要的角色。在这些形状中,ellipsoidal 形状因其独特的属性和应用而脱颖而出。一个 ellipsoidal 物体可以定义为一种三维图形,类似于一个拉长的球体,具有光滑且连续的表面。这种几何形状不仅在数学上令人着迷,而且在物理学、工程学和天文学等多个领域具有重要的意义。 最常见的 ellipsoidal 形状的例子是地球本身。虽然我们常常认为我们的星球是一个完美的球体,但实际上它是一个扁椭球体,这是一种特定类型的 ellipsoidal 形状。地球的赤道直径略大于其极地直径,导致其在两极处扁平而在赤道处隆起。这种地球的 ellipsoidal 特性影响了生活的许多方面,包括重力、气候和卫星导航系统。 在工程学中,ellipsoidal 形状经常用于各种结构和组件的设计。例如,ellipsoidal 储罐通常用于液体和气体的储存。ellipsoidal 的设计使得压力在储罐表面上的分布更加高效,从而使其更强大,更能抵抗压力。这在安全性和可靠性至关重要的行业中尤为重要。 此外,ellipsoidal 形状的概念超越了单纯的物理对象;它在数据可视化和建模中也有相关性。在统计学中,ellipsoidal 等高线可以表示多变量数据的置信区域。通过在 ellipsoidal 边界内可视化数据点,研究人员可以更好地理解不同变量之间的关系和方差。这一应用在机器学习和数据科学等领域尤其有用,因为理解复杂的数据集至关重要。 在天文学中,ellipsoidal 形状对于理解天体的轨道至关重要。行星、月亮和卫星的运动路径往往遵循 ellipsoidal 轨迹,这是由于作用于它们的引力。这一知识对于太空探索和导航至关重要,因为准确预测这些天体的运动需要对其 ellipsoidal 轨道有扎实的掌握。 总之,ellipsoidal 形状不仅仅是一个数学概念;它是我们宇宙的一个基本方面,影响着各个科学学科。从我们星球的形状到工程结构的设计,再到数据分析,理解 ellipsoidal 形式增强了我们对世界的理解。随着我们继续探索和创新,ellipsoidal 形状的重要性无疑将继续成为我们追求知识和理解的关键元素。
文章标题:ellipsoidal的意思是什么
文章链接:https://www.liuxue886.cn/danci/348246.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论