enantiomers
简明释义
英[ɪˈnæntiəˌmɜːrz]美[ɪˈnæn.t̬iˌɑː.mɚz]
n. [有化]对映体;[有化]对映异构物(enantiomer 的复数)
英英释义
Enantiomers are pairs of molecules that are mirror images of each other and cannot be superimposed onto one another. | 对映体是一对彼此的镜像分子,无法重叠在一起。 |
单词用法
对映体的光学活性 | |
对映体的分离 | |
R和S对映体 | |
手性对映体 |
同义词
反义词
例句
1.Objective: to develop a chiral separation method for the enantiomers of pantoprazole.
目的:建立泮托拉唑对映体拆分和对映体光学纯度测定方法。
2.Objective: to develop a chiral separation method for the enantiomers of pantoprazole.
目的:建立泮托拉唑对映体拆分和对映体光学纯度测定方法。
3.The two enantiomers, however, showed equal inhibition activity on wheat growth.
但是对小麦生长的抑制活性两个对映体表现一致。
4.Now, the most important thing is to obtain one of the chiral drug enantiomers.
因此,获得单一对映体的药物成为一项重要的工作。
5.Diastereomers that are not enantiomers also fall into this category.
不是对映异构体的非对映异构体也属于这一类。
6.The natural products are not always pure enantiomers.
介绍了天然物不一定是纯的对映体;
7.In organic chemistry, enantiomers are crucial for understanding molecular interactions.
在有机化学中,对映体 对于理解分子相互作用至关重要。
8.The two enantiomers of a drug can have very different effects on the body.
一种药物的两个对映体 可能对身体产生截然不同的影响。
9.Scientists often use chiral chromatography to separate enantiomers in a mixture.
科学家们常常使用手性色谱法来分离混合物中的对映体。
10.The enantiomers of limonene smell different - one smells like oranges and the other like lemons.
对映体 的柠檬烯气味不同——一个闻起来像橙子,另一个像柠檬。
11.When testing for biological activity, it's important to consider the specific enantiomers involved.
在测试生物活性时,考虑所涉及的特定对映体 是很重要的。
作文
In the field of chemistry, the concept of chirality plays a crucial role in understanding the behavior of molecules. One of the most fascinating aspects of chirality is the existence of enantiomers, which are pairs of molecules that are mirror images of each other but cannot be superimposed. This property is akin to how our left and right hands are mirror images yet cannot be perfectly aligned on top of one another. The study of enantiomers is not only significant in theoretical chemistry but also has profound implications in various applications, particularly in the pharmaceutical industry. When two molecules are enantiomers, they possess identical physical properties, such as melting points and boiling points, but they can behave very differently in biological systems. For instance, one enantiomer of a drug may be therapeutically beneficial, while its counterpart could be ineffective or even harmful. A classic example of this phenomenon is seen in the case of thalidomide, a drug that was prescribed in the 1950s and 1960s. One enantiomer of thalidomide was effective in treating morning sickness in pregnant women, whereas the other caused severe birth defects. This tragedy highlighted the importance of understanding enantiomers in drug development and regulation. The ability to distinguish between enantiomers is crucial for chemists and pharmacologists. Various techniques, such as chiral chromatography and optical rotation measurements, are employed to separate and analyze these molecules. Chiral chromatography, for instance, makes use of chiral stationary phases to selectively retain one enantiomer over the other, allowing researchers to isolate the desired compound. This is essential not only for ensuring the efficacy and safety of medications but also for complying with regulatory standards that govern drug approval processes. Furthermore, the concept of enantiomers extends beyond pharmaceuticals. In the field of agrochemicals, the effectiveness of pesticides can also depend on their chiral nature. Different enantiomers of a pesticide may exhibit varying levels of toxicity to pests and non-target organisms, making the study of chirality vital for developing safer and more effective agricultural products. In addition to practical applications, the study of enantiomers provides insights into fundamental principles of stereochemistry. Understanding how enantiomers interact with chiral environments, such as enzymes or receptors, can help elucidate mechanisms of action at the molecular level. This knowledge not only advances the field of synthetic chemistry but also enhances our comprehension of biological processes. In conclusion, enantiomers represent a captivating aspect of molecular chemistry with significant implications across various fields, particularly in medicine and agriculture. As we continue to explore the complexities of chirality and enantiomers, it becomes increasingly clear that a deep understanding of these concepts is essential for innovation and safety in chemical applications. The journey of studying enantiomers opens doors to new discoveries and highlights the intricate relationship between molecular structure and function, ultimately shaping the future of science and technology.
在化学领域,手性概念在理解分子行为中起着至关重要的作用。手性的一个最迷人的方面是存在对映体,它们是一对彼此的镜像分子,但无法重叠。这一特性类似于我们左右手是镜像但无法完美重叠的方式。对对映体的研究不仅在理论化学中具有重要意义,而且在各种应用中也有深远的影响,特别是在制药行业。 当两个分子是对映体时,它们具有相同的物理性质,如熔点和沸点,但在生物系统中可能表现出截然不同的行为。例如,一种药物的某个对映体可能在治疗上是有效的,而其对应的对映体可能无效甚至有害。这个现象的经典例子是在20世纪50年代和60年代开处方的沙利度胺药物。沙利度胺的一个对映体在治疗孕妇晨吐方面有效,而另一个则导致严重的出生缺陷。这场悲剧突显了在药物开发和监管中理解对映体的重要性。 区分对映体的能力对化学家和药理学家至关重要。各种技术,如手性色谱和光学旋转测量,被用于分离和分析这些分子。例如,手性色谱利用手性固定相选择性地保留一个对映体而不是另一个,从而使研究人员能够分离所需的化合物。这对于确保药物的有效性和安全性以及遵守药物审批过程中的监管标准至关重要。 此外,对映体的概念超越了制药领域。在农用化学品领域,杀虫剂的有效性也可能依赖于其手性特性。不同的对映体杀虫剂可能对害虫和非靶标生物表现出不同的毒性,因此手性研究对开发更安全、更有效的农业产品至关重要。 除了实际应用,对映体的研究还提供了对立体化学基本原理的深入了解。理解对映体如何与手性环境(如酶或受体)相互作用,可以帮助阐明分子层面的作用机制。这一知识不仅推动了合成化学的发展,还增强了我们对生物过程的理解。 总之,对映体代表了分子化学的一个迷人方面,对各个领域,特别是在医学和农业方面具有重要意义。随着我们继续探索手性和对映体的复杂性,越来越清楚的是,深入理解这些概念对于化学应用的创新和安全至关重要。研究对映体的旅程为新的发现打开了大门,并突显了分子结构与功能之间的复杂关系,最终塑造了科学和技术的未来。
文章标题:enantiomers的意思是什么
文章链接:https://www.liuxue886.cn/danci/349687.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论