enantiotropic
简明释义
英[/ɪˈnæn.tɪˌɒ.trə.pɪk/]美[/ɪˈnæn.tɪˌɒ.trə.pɪk/]
adj. 对映的,双变性的);互变的
英英释义
Relating to substances that can exist in two different forms which are interconvertible, typically under varying conditions of temperature or pressure. | 与可以以两种不同形式存在的物质相关,这些形式通常在温度或压力变化的条件下可以相互转化。 |
单词用法
同义词
反义词
例句
1.Study by polarizing microscopy showed that they were enantiotropic liquid crystals with highly stable smectic a and nematic phases.
通过正交偏光显微镜观察研究,发现所得到的化合物是呈现高度稳定的近晶A相和向列相的新型互变液晶。
2.Study by polarizing microscopy showed that they were enantiotropic liquid crystals with highly stable smectic a and nematic phases.
通过正交偏光显微镜观察研究,发现所得到的化合物是呈现高度稳定的近晶A相和向列相的新型互变液晶。
3.The crystal structure of the compound is classified as enantiotropic (对映型的), allowing it to exist in two different forms depending on temperature.
该化合物的晶体结构被分类为enantiotropic(对映型的),使其能够根据温度存在两种不同的形式。
4.In certain materials, the enantiotropic (对映型的) phase transition can lead to significant changes in their optical properties.
在某些材料中,enantiotropic(对映型的)相变可以导致其光学性质发生显著变化。
5.The study of enantiotropic (对映型的) systems is crucial for understanding polymorphism in pharmaceuticals.
研究enantiotropic(对映型的)系统对于理解药物中的多晶型至关重要。
6.Researchers found that the enantiotropic (对映型的) behavior of the material could be exploited in temperature sensors.
研究人员发现,该材料的enantiotropic(对映型的)行为可以在温度传感器中加以利用。
7.The enantiotropic (对映型的) nature of the substance was confirmed through X-ray diffraction analysis.
通过X射线衍射分析确认了该物质的enantiotropic(对映型的)特性。
作文
In the realm of science, particularly in chemistry and materials science, the term enantiotropic is crucial for understanding the behavior of certain substances under varying conditions. The concept refers to the ability of a substance to exist in two different forms, which can interconvert depending on temperature or pressure. This phenomenon is significant because it highlights the complexities of phase transitions and stability in materials. For example, many organic compounds exhibit enantiotropic behavior, where they can crystallize in different forms that are stable at different temperatures. This property can influence not only the physical characteristics of the material but also its chemical reactivity and solubility. Understanding enantiotropic systems is vital for various applications, including pharmaceuticals, where the efficacy of a drug can depend on its crystalline form. The polymorphism observed in drugs can lead to differences in bioavailability; thus, recognizing whether a compound is enantiotropic allows chemists to optimize formulations for better therapeutic outcomes. Moreover, enantiotropic behavior is not limited to organic compounds. Many inorganic materials, such as minerals, can also display this characteristic. For instance, the mineral quartz can exist in several forms, such as alpha-quartz and beta-quartz, which are stable at different temperatures. The study of these enantiotropic forms aids geologists in understanding the conditions under which these minerals formed, providing insights into geological processes over time. In addition to its scientific implications, the concept of enantiotropic can be metaphorically applied to various fields such as psychology and sociology. Just as substances can transition between forms based on external conditions, individuals and societies can also change their behaviors and attitudes in response to different environments. This parallel illustrates the dynamic nature of existence, where adaptability is crucial for survival and growth. In conclusion, the term enantiotropic encapsulates a fascinating aspect of material science that underscores the importance of understanding phase transitions and stability. Whether in the context of drug formulation, mineralogy, or broader societal changes, recognizing the enantiotropic nature of substances and systems provides valuable insights that can lead to advancements in technology, health, and our comprehension of the world around us. As we continue to explore these phenomena, the relevance of enantiotropic behavior will undoubtedly remain a pivotal topic in scientific research and practical applications.
在科学领域,特别是化学和材料科学中,术语enantiotropic对于理解某些物质在不同条件下的行为至关重要。这个概念指的是一种物质能够以两种不同形式存在,这两种形式可以根据温度或压力相互转化。这种现象是重要的,因为它突出了相变和材料稳定性的复杂性。例如,许多有机化合物表现出enantiotropic行为,它们可以以不同的形式结晶,这些形式在不同的温度下是稳定的。这一特性不仅会影响材料的物理特性,还会影响其化学反应性和溶解度。 理解enantiotropic系统对各种应用至关重要,包括制药行业,其中药物的有效性可能取决于其晶体形态。药物的多晶型现象可能导致生物利用度的差异,因此,识别化合物是否为enantiotropic使化学家能够优化配方,以获得更好的治疗效果。 此外,enantiotropic行为并不仅限于有机化合物。许多无机材料,如矿物,也可以显示这种特性。例如,矿物石英可以以几种形式存在,如α-石英和β-石英,这些形式在不同的温度下是稳定的。对这些enantiotropic形式的研究有助于地质学家理解这些矿物形成的条件,从而提供对地质过程的深入见解。 除了科学意义外,enantiotropic的概念还可以隐喻性地应用于心理学和社会学等各个领域。正如物质可以根据外部条件在形式之间转变一样,个人和社会也可以在不同环境的影响下改变他们的行为和态度。这一类比说明了存在的动态特性,在这种特性中,适应能力对生存和成长至关重要。 总之,术语enantiotropic概括了材料科学中一个引人入胜的方面,强调了理解相变和稳定性的重要性。无论是在药物配方、矿物学还是更广泛的社会变化的背景下,认识到物质和系统的enantiotropic特性提供了宝贵的洞察,这些洞察可以推动技术、健康和我们对周围世界的理解的进步。随着我们继续探索这些现象,enantiotropic行为的相关性无疑将继续成为科学研究和实际应用中的一个关键话题。
文章标题:enantiotropic的意思是什么
文章链接:https://www.liuxue886.cn/danci/349706.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论