epitaxial
简明释义
英[ˌepɪˈtæksɪəl]美[ˌepɪˈtæksiəl]
adj. [电子] 外延的;取向附生的
英英释义
Relating to the growth of a crystalline layer on a crystalline substrate, where the layer's structure is aligned with that of the substrate. | 与在晶体基底上生长晶体层相关,其中层的结构与基底的结构对齐。 |
单词用法
[计]外延生长 | |
外延层;外延生长膜 |
同义词
反义词
块体 | Bulk materials are typically less ordered than epitaxial layers. | 块体材料通常比外延层的结构更无序。 | |
无定形 | Amorphous silicon is used in applications where epitaxial growth is not required. | 无定形硅用于不需要外延生长的应用中。 |
例句
1.The surface smoothness of the single crystal substrate will be the most important factor, which influences the quality of the epitaxial film growth.
单晶基片的表面光洁度指标是影响后续薄膜生长质量的重要因素。
2.The experimental results prove that the fall time of IGBT increases when increasing the thickness of the epitaxial layer.
实验结果证明IGBT的下降时间随着外延层厚度的增加而增加。
3.The invention is concerned with the manufacture method of the silicon epitaxial slice that is the silicon extension method of remixing arsenic substrate.
本发明公开了一种制造硅外延片的方法,即一种重掺砷衬底的硅外延方法。
4.Further growth of continuous compound semiconductor thick films (15) or wafer is achieved by epitaxial lateral overgrowth using HVPE.
通过使用HVPE的外延横向过生长实现连续的化合物半导体厚膜(15)或晶片的进一步的生长。
5.Based on actual measurement results, the influence of process quality of semiconductor substrate wafers on epitaxial growth is described.
本文根据实际测量结果,一叙述了半导体衬底制片质量对外延生长的影响。
6.Recent results with CBE show that CBE holds the potential as an important new epitaxial technique that goes beyond both MBE and MOCVD.
最近用化学束外延得到的结果表明CBE具有超过MBE和MOCVD的潜力而成为一种非常重要的新的外延技术。
7.PNP epitaxial silicon transistor. Low frequency power amplifier.
PNP外延硅晶体管。低频功率放大器。
8.Epitaxial growth steps and growth spirals were observed from epitaxial film appearance photograph.
从外延形貌照片中观察到了外延生长台及生长螺线。
9.The researchers developed a new method for growing epitaxial 外延的 layers of silicon on sapphire substrates.
研究人员开发了一种在蓝宝石基底上生长epitaxial 外延的硅层的新方法。
10.The epitaxial 外延的 growth technique is crucial for producing high-quality semiconductor devices.
这种epitaxial 外延的生长技术对生产高质量半导体设备至关重要。
11.In our lab, we routinely use epitaxial 外延的 deposition to create thin films for photovoltaic applications.
在我们的实验室中,我们通常使用epitaxial 外延的沉积来创建用于光伏应用的薄膜。
12.The epitaxial 外延的 layer significantly improves the performance of the LED.
这层epitaxial 外延的材料显著提高了LED的性能。
13.They studied the effects of temperature on the epitaxial 外延的 growth rate of gallium nitride.
他们研究了温度对氮化镓的epitaxial 外延的生长速率的影响。
作文
The field of materials science is constantly evolving, and one of the most fascinating aspects of this discipline is the study of crystal growth. Among the various methods employed in this field, the process known as epitaxial growth stands out due to its significance in the development of advanced semiconductor devices. This technique involves the deposition of a crystalline layer on a substrate, where the deposited layer follows the crystallographic orientation of the underlying material. The term epitaxial itself derives from the Greek words 'epi,' meaning 'upon,' and 'taxis,' meaning 'arrangement.' Therefore, it refers to the arrangement of atoms in a layer that is influenced by the structure of the substrate beneath it. In practical applications, epitaxial growth is crucial for the fabrication of high-performance electronic components such as transistors, diodes, and integrated circuits. For instance, in the production of gallium arsenide (GaAs) devices, the use of epitaxial techniques allows for precise control over the electrical properties of the material, leading to enhanced performance in applications like solar cells and laser diodes. The ability to grow thin films with specific properties enables engineers to tailor materials to meet the demands of modern technology. Moreover, the epitaxial process can be categorized into different types based on the method of deposition. Molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) are two widely used techniques in this area. MBE involves the evaporation of elemental sources in a vacuum environment, allowing for atomic-layer precision in the growth of the epitaxial layers. On the other hand, MOCVD utilizes metal-organic compounds to facilitate the growth of complex structures, making it particularly suitable for producing optoelectronic devices. The importance of epitaxial growth extends beyond just semiconductor technology; it also plays a vital role in the development of photonic devices and quantum structures. In the realm of photonics, epitaxial layers can be engineered to create optical waveguides and lasers with specific wavelengths, which are essential for telecommunications and data transmission. Furthermore, the advent of quantum computing has sparked interest in epitaxial techniques to create qubits—quantum bits that are fundamental to the operation of quantum computers. Despite its advantages, the epitaxial growth process is not without challenges. Achieving a high-quality interface between the substrate and the epitaxial layer is critical, as defects at this boundary can significantly affect the performance of the final device. Researchers continuously strive to refine these techniques to minimize defects and enhance the uniformity of the grown layers. In conclusion, the concept of epitaxial growth is integral to the advancement of modern technology, particularly in the fields of electronics and photonics. As we continue to push the boundaries of what is possible with materials science, the importance of understanding and mastering epitaxial techniques will only grow. The ability to manipulate material properties at the atomic level opens up a world of possibilities, paving the way for innovations that could transform our daily lives and drive future technological advancements.
材料科学领域正在不断发展,其中一个最吸引人的方面是晶体生长的研究。在这个领域中,外延生长这一过程因其在先进半导体器件开发中的重要性而脱颖而出。这种技术涉及在基材上沉积晶体层,其中沉积层遵循底层材料的晶体取向。术语外延本身源于希腊语单词'epi',意为'在……之上',和'taxis',意为'排列'。因此,它指的是受底层结构影响的层中的原子排列。 在实际应用中,外延生长对高性能电子元件的制造至关重要,如晶体管、二极管和集成电路。例如,在生产砷化镓(GaAs)设备时,使用外延技术可以精确控制材料的电气特性,从而在太阳能电池和激光二极管等应用中提升性能。能够生长具有特定特性的薄膜使工程师能够定制材料以满足现代技术的需求。 此外,外延过程可以根据沉积方法分为不同类型。分子束外延(MBE)和金属有机化学气相沉积(MOCVD)是该领域中广泛使用的两种技术。MBE涉及在真空环境中蒸发元素源,从而实现原子层精度的外延层生长。另一方面,MOCVD利用金属有机化合物促进复杂结构的生长,使其特别适合用于生产光电器件。 外延生长的重要性不仅限于半导体技术;它在光子器件和量子结构的发展中也发挥着至关重要的作用。在光子学领域,外延层可以被设计成创建具有特定波长的光波导和激光器,这对于电信和数据传输至关重要。此外,量子计算的出现引发了对外延技术的兴趣,以创建量子位——量子计算机运作的基础。 尽管有其优势,外延生长过程并非没有挑战。实现基材和外延层之间的高质量界面至关重要,因为该边界处的缺陷可能会显著影响最终设备的性能。研究人员不断努力改进这些技术,以最小化缺陷并增强生长层的均匀性。 总之,外延生长的概念对于现代技术的发展至关重要,尤其是在电子和光子学领域。随着我们不断推动材料科学的可能性,理解和掌握外延技术的重要性只会增加。在原子水平操纵材料特性的能力打开了一个可能性的新世界,为改变我们日常生活和推动未来技术进步的创新铺平了道路。
文章标题:epitaxial的意思是什么
文章链接:https://www.liuxue886.cn/danci/352706.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论