equation
简明释义
n. 等式,方程(式);等同(看待);(必须考虑多种因素的)复杂局面(或问题)
复 数 e q u a t i o n s
英英释义
单词用法
微分方程 | |
波动方程 |
同义词
反义词
差异 | 这两份报告之间存在显著的差异。 | ||
不等式 | The inequality in wealth distribution is a major social issue. | 财富分配的不平等是一个主要的社会问题。 |
例句
1.This paper derives the motion property equation for Ravigneaux planetary transmission.
本文推导了拉维娜式行星齿轮变速器的运动特性方程。
2.So let's work together to balance this equation.
让我们一起来平衡这个等式。
3.The authors are witheringly contemptuous of the bogus equation of tidiness and morality.
本书的两位作者毫不留情地批判了将整洁与道德相等同的做法。
4.Technological improvements are needed so that wind, solar and hydrogen can be more feasible parts of the energy equation.
需要改进技术,提高风能、太阳能和氢能在能源等式中的可行性。
5.If more options are introduced, the value equation changes.
如果引入更多的选项,价值平衡就会发生改变。
6.The slope of this linear fitting equation is 0.432 cm/sheet.
该线性拟合方程的斜率为0.432cm/张。
7.The theoretical equation of the centerlinedilution along the axis of jets in coflow ambient is developed.
建立了同流环境中沿射流轴线的中心线稀释的理论方程。
8.The party fears the equation between higher spending and higher taxes.
该党害怕增加开支和增高税收之间的相互制衡。
9.While climate is a key element, Moritz says, it shouldn't come at the expense of the rest of the equation.
莫里茨说,虽然气候是一个关键因素,但不应该以牺牲其他因素为代价。
10.In mathematics, an equation is a statement that asserts the equality of two expressions.
在数学中,方程是一个断言两个表达式相等的陈述。
11.The quadratic equation can be solved using the quadratic formula.
二次方程可以使用二次公式求解。
12.To balance the chemical reaction, we need to write a proper equation.
为了平衡化学反应,我们需要写出一个正确的方程式。
13.An equation can have one solution, multiple solutions, or no solution at all.
方程可以有一个解、多个解或根本没有解。
14.In physics, the equation of motion describes how an object moves under the influence of forces.
在物理学中,运动的方程描述了物体在力的作用下如何运动。
作文
In the realm of mathematics, the term equation refers to a statement that asserts the equality of two expressions. An equation typically contains variables, constants, and mathematical operators, which together form a relationship that can be solved to find the value of the unknowns. For instance, the simple equation x + 2 = 5 illustrates how we can determine the value of x by manipulating the terms involved. This fundamental concept is not only essential in mathematics but also plays a crucial role in various fields such as physics, engineering, and economics. Understanding equations is vital for students as they progress through their academic journeys. The ability to solve equations enhances critical thinking and problem-solving skills, which are invaluable in real-world applications. In high school, students often encounter linear equations, quadratic equations, and even more complex forms like polynomial or differential equations. Each type presents unique challenges and requires different strategies for solution. Moreover, the concept of equation extends beyond mere numbers and symbols. It embodies a way of thinking that encourages logical reasoning and analytical skills. For example, in economics, supply and demand can be represented through an equation that predicts market behavior. Similarly, in physics, the laws of motion can be expressed using equations that describe the relationships between force, mass, and acceleration. These applications highlight how equations serve as tools for understanding and predicting phenomena in the natural world. Furthermore, the significance of equations can be observed in everyday life. From calculating expenses to determining travel time, equations provide a framework for making informed decisions. For instance, if you want to plan a budget, you might set up an equation to balance your income against your expenses. This practical use of equations emphasizes their importance beyond the classroom. In conclusion, the study of equations is a cornerstone of mathematics and serves as a gateway to understanding various scientific principles. The ability to formulate and solve equations fosters a deeper comprehension of the world around us. As students learn to navigate through different types of equations, they not only develop mathematical proficiency but also cultivate essential life skills. Thus, mastering the concept of equation is crucial for anyone aspiring to excel in any field that relies on quantitative analysis. By embracing the challenges presented by equations, individuals can unlock new opportunities and enhance their overall problem-solving capabilities.
在数学领域,术语equation指的是一个断言两个表达式相等的陈述。一个equation通常包含变量、常数和数学运算符,这些元素共同形成一个可以解决以找到未知数值的关系。例如,简单的equation x + 2 = 5说明了我们如何通过操纵涉及的项来确定x的值。这个基本概念不仅在数学中至关重要,而且在物理学、工程学和经济学等多个领域也发挥着关键作用。 理解equations对学生来说至关重要,因为他们在学术旅程中不断进步。解决equations的能力增强了批判性思维和解决问题的技能,这在现实世界应用中是无价的。在高中,学生通常会接触到线性equations、二次equations,甚至更复杂的形式,如多项式或微分equations。每种类型都提出独特的挑战,并需要不同的解决策略。 此外,equation的概念超越了单纯的数字和符号。它体现了一种思维方式,鼓励逻辑推理和分析能力。例如,在经济学中,供需关系可以通过一个equation来表示,从而预测市场行为。同样,在物理学中,运动定律可以使用描述力、质量和加速度之间关系的equations来表达。这些应用突显了equations作为理解和预测自然现象的工具的重要性。 此外,equations的意义也可以在日常生活中观察到。从计算开支到确定旅行时间,equations提供了一个框架,以便做出明智的决策。例如,如果您想制定预算,您可能会建立一个equation来平衡您的收入与支出。这种对equations的实际使用强调了它们在课堂之外的重要性。 总之,equations的研究是数学的基石,并且是理解各种科学原理的门户。制定和解决equations的能力促进了对周围世界更深刻的理解。当学生学习如何应对不同类型的equations时,他们不仅提高了数学能力,还培养了必要的生活技能。因此,掌握equation的概念对于任何希望在依赖定量分析的领域中脱颖而出的人来说都是至关重要的。通过迎接equations所带来的挑战,个人可以解锁新的机会并增强整体解决问题的能力。
文章标题:equation的意思是什么
文章链接:https://www.liuxue886.cn/danci/352931.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论