equipartition
简明释义
英[ˌekwɪpɑːˈtɪʃən]美[ˌekwɪpɑːˈtɪʃən]
n. [物][化学] 均分
英英释义
单词用法
能量的均分 | |
均分定理 | |
均分原理 | |
均分分布 |
同义词
反义词
划分 | The room was partitioned to create separate spaces for different activities. | 房间被划分成不同的空间以进行不同的活动。 | |
隔离 | The segregation of resources led to unequal distribution among the teams. | 资源的隔离导致团队之间的不平等分配。 |
例句
1.The elastic collision mechanism of brownian motion is studied and the equipartition of kinetic energy of brownian particle has been proved.
研究了布郎运动的弹性碰撞机制,证明了布郎粒子的能量均分定理。
2.In this paper, we study the asymptotic equipartition property (AEP) form order nonhomogeneous Markov information source.
本文研究非齐次m阶马氏信源的渐近均分割性。
3.Raizen's study now proves that the equipartition theorem is true for Brownian particles; in this case, glass beads that were three micrometers across.
现在,Raizen的研究证明了能量均分定理在布朗粒子中的正确性。这时3微米大小的玻璃微粒可以穿过。
4.The elastic collision mechanism of Brownian motion is studied, and the equipartition of kinetic energy of Brownian particle has been proved.
研究了布郎运动的弹性碰撞机制,证明了布郎粒子的能量均分定理。
5.As corollaries, some asymptotic equipartition property theorems for arbitrary information source, m-order Markov information source, and non-memory information source were obtained.
得出了若干任意信源、m阶马氏信源、无记忆信源的渐进均匀分割性定理,并将已有的关于离散信源的结果进行了推广。
6.As corollaries, some asymptotic equipartition property theorems for arbitrary information source, m-order Markov information source, and non-memory information source were obtained.
得出了若干任意信源、m阶马氏信源、无记忆信源的渐进均匀分割性定理,并将已有的关于离散信源的结果进行了推广。
7.This is a simple example of the equipartition theorem at work.
这就是均分定理应用的一个简单例子。
8.In statistical mechanics, the principle of equipartition states that energy is distributed equally among all degrees of freedom.
在统计力学中,equipartition 原理表明能量在所有自由度之间均匀分配。
9.The equipartition theorem helps us understand how molecules in a gas share kinetic energy.
equipartition 定理帮助我们理解气体中的分子如何共享动能。
10.According to the equipartition theorem, each degree of freedom contributes an equal amount of energy.
根据 equipartition 定理,每个自由度贡献相等的能量。
11.The concept of equipartition can be applied in various fields, including thermodynamics and quantum mechanics.
equipartition 的概念可以应用于多个领域,包括热力学和量子力学。
12.In a system at thermal equilibrium, the energy distribution follows the equipartition rule.
在热平衡系统中,能量分布遵循 equipartition 规则。
作文
In the realm of physics and mathematics, the concept of equipartition plays a pivotal role in understanding various systems and their behaviors. The term equipartition refers to the principle that energy is distributed equally among all degrees of freedom in a system at thermal equilibrium. This principle is foundational in statistical mechanics and has profound implications for thermodynamics and kinetic theory. To illustrate the importance of equipartition, consider a simple gas composed of many particles. According to the equipartition theorem, each degree of freedom—such as translational motion in three dimensions, rotational motion, and vibrational modes—contributes equally to the total energy of the system. For instance, in a monatomic ideal gas, each atom has three translational degrees of freedom. Therefore, the total kinetic energy of the gas can be expressed as a function of temperature, with each degree of freedom contributing an equal amount of energy. The implications of equipartition extend beyond ideal gases. In more complex systems, such as diatomic or polyatomic gases, the theorem still holds, but with additional considerations for rotational and vibrational motions. For example, a diatomic molecule has more degrees of freedom than a monatomic one, allowing it to store energy in both translational and rotational forms. As a result, the specific heat capacity of diatomic gases is higher than that of monatomic gases, reflecting the additional energy storage capabilities provided by the rotational degrees of freedom. In addition to its applications in thermodynamics, equipartition has relevance in other fields, such as statistical mechanics and quantum physics. In statistical mechanics, the equipartition theorem helps explain the distribution of energy among particles in a system, leading to insights into the behavior of gases, liquids, and solids. Similarly, in quantum mechanics, the concept of equipartition aids in understanding the energy levels of particles and their distributions at different temperatures. Moreover, the principle of equipartition serves as a bridge between macroscopic and microscopic views of matter. By demonstrating how energy is distributed among various degrees of freedom, it allows scientists to connect the observable properties of materials—such as temperature and pressure—with the underlying molecular dynamics. This connection is crucial for developing models that accurately describe the behavior of materials under different conditions. In conclusion, the concept of equipartition is essential for comprehending the distribution of energy in physical systems. Its applications span various disciplines, including thermodynamics, statistical mechanics, and quantum physics. Understanding equipartition not only deepens our knowledge of energy distribution but also enhances our ability to predict and manipulate the behavior of materials in diverse contexts. As we continue to explore the complexities of the physical world, the principle of equipartition will undoubtedly remain a cornerstone of scientific inquiry, guiding researchers in their quest to unravel the mysteries of energy and motion.
在物理和数学领域,equipartition的概念在理解各种系统及其行为方面发挥着关键作用。该术语equipartition指的是能量在热平衡系统中均匀分配到所有自由度的原则。这个原则是统计力学的基础,对热力学和动理论具有深远的影响。 为了说明equipartition的重要性,考虑一个由许多粒子组成的简单气体。根据等分配定理,每个自由度——例如三维中的平移运动、旋转运动和振动模式——对系统的总能量贡献相等。例如,在单原子理想气体中,每个原子有三个平移自由度。因此,气体的总动能可以表示为温度的函数,每个自由度都贡献相等的能量。 equipartition的影响超越了理想气体。在更复杂的系统中,例如双原子或多原子气体,该定理仍然成立,但需要额外考虑旋转和振动运动。例如,双原子分子比单原子分子有更多的自由度,使其能够以平移和旋转形式储存能量。因此,双原子气体的比热容高于单原子气体,这反映了旋转自由度提供的额外能量储存能力。 除了在热力学中的应用,equipartition在其他领域也具有相关性,如统计力学和量子物理。在统计力学中,等分配定理帮助解释系统中粒子的能量分布,从而深入了解气体、液体和固体的行为。同样,在量子力学中,equipartition的概念有助于理解粒子的能量水平及其在不同温度下的分布。 此外,equipartition的原则作为宏观和微观物质视角之间的桥梁。通过展示能量是如何在各种自由度之间分配的,它使科学家能够将材料的可观察特性(如温度和压力)与基础的分子动力学联系起来。这种联系对于开发准确描述不同条件下材料行为的模型至关重要。 总之,equipartition的概念对于理解物理系统中能量的分布至关重要。它的应用跨越多个学科,包括热力学、统计力学和量子物理。理解equipartition不仅加深了我们对能量分配的认识,还增强了我们在不同背景下预测和操纵材料行为的能力。随着我们继续探索物理世界的复杂性,equipartition的原则无疑将继续成为科学探究的基石,引导研究人员揭开能量和运动的奥秘。
文章标题:equipartition的意思是什么
文章链接:https://www.liuxue886.cn/danci/353022.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论