ethionine
简明释义
n. 乙硫氨基酪酸
英英释义
Ethionine is an amino acid that is a sulfur-containing analogue of methionine and is used in biochemical research. | 乙硫氨酸是一种氨基酸,是甲硫氨酸的含硫类似物,常用于生物化学研究。 |
单词用法
ethionine毒性 | |
ethionine代谢 | |
ethionine补充 | |
被ethionine抑制 | |
ethionine诱导的变化 | |
ethionine对肝脏的影响 |
同义词
S-乙基-L-半胱氨酸 | Ethionine is often used in studies related to liver function. | 乙硫氨酸常用于与肝功能相关的研究。 | |
盐酸乙硫氨酸 | S-ethyl-L-homocysteine has applications in biochemical research. | S-乙基-L-半胱氨酸在生化研究中有应用。 |
反义词
美硫氨酸 | Methionine is an essential amino acid that must be obtained through diet. | 美硫氨酸是一种必需氨基酸,必须通过饮食摄取。 | |
半胱氨酸 | Cysteine plays a crucial role in protein synthesis and detoxification. | 半胱氨酸在蛋白质合成和解毒中发挥着重要作用。 |
例句
1.The protein metabolic inhibitors, such as ethionine and p-fluorophenylalanine, interfere with the vernalizing process of winter wheat also at its middle period.
蛋白质合成抑制剂乙基硫氨酸和对-氟苯丙氨酸能抑制冬小麦的春化,抑制时期也是在春化过程的中期。
2.The protein metabolic inhibitors, such as ethionine and p-fluorophenylalanine, interfere with the vernalizing process of winter wheat also at its middle period.
蛋白质合成抑制剂乙基硫氨酸和对-氟苯丙氨酸能抑制冬小麦的春化,抑制时期也是在春化过程的中期。
3.The variant cell line also expressed high level of cross resistance to ethionine which was 6.5 fold higher than that of the wild type.
同时还表现出对乙硫氨酸的交叉抗性,其抗性是野生型的6.5倍, 表明该抗性系抗性表达稳定。
4.The researchers found that ethionine 乙硫氨酸 can inhibit protein synthesis in cancer cells.
研究人员发现,乙硫氨酸 ethionine 可以抑制癌细胞中的蛋白质合成。
5.In animal studies, ethionine 乙硫氨酸 has shown potential as a hepatotoxic agent.
在动物研究中,乙硫氨酸 ethionine 显示出作为肝毒性剂的潜力。
6.The effects of ethionine 乙硫氨酸 on liver function were significant in the experimental group.
在实验组中,乙硫氨酸 ethionine 对肝功能的影响显著。
7.Scientists are investigating the role of ethionine 乙硫氨酸 in metabolic disorders.
科学家们正在研究乙硫氨酸 ethionine 在代谢疾病中的作用。
8.The toxicity of ethionine 乙硫氨酸 varies depending on the dosage administered.
根据给药剂量的不同,乙硫氨酸 ethionine 的毒性也有所不同。
作文
Ethionine is an amino acid analogue that has garnered significant interest in the fields of biochemistry and pharmacology. It is structurally similar to methionine, an essential amino acid, but contains a sulfur atom in a different position, which alters its biochemical properties. The study of ethionine (乙硫氨酸) has revealed its potential effects on protein synthesis and metabolism, making it a valuable compound for researchers exploring cellular processes. One of the most intriguing aspects of ethionine (乙硫氨酸) is its role as an inhibitor of protein synthesis. When introduced into biological systems, ethionine (乙硫氨酸) can disrupt the normal function of ribosomes, the cellular machinery responsible for translating mRNA into proteins. This inhibition can lead to a variety of physiological effects, including alterations in cell growth and differentiation. As such, ethionine (乙硫氨酸) has been studied for its potential applications in cancer research, where uncontrolled protein synthesis is a hallmark of tumor cells. In addition to its effects on protein synthesis, ethionine (乙硫氨酸) has been investigated for its influence on liver function. Research has shown that ethionine (乙硫氨酸) can induce liver damage in experimental models, highlighting its toxicological implications. This toxicity is thought to stem from the accumulation of metabolites that interfere with normal liver metabolism. Consequently, understanding the mechanisms underlying ethionine (乙硫氨酸) toxicity is crucial for developing strategies to mitigate its harmful effects while leveraging its biochemical properties for therapeutic purposes. Moreover, the study of ethionine (乙硫氨酸) extends beyond its biochemical implications; it also raises important questions about the nature of amino acids and their analogues. The unique structure of ethionine (乙硫氨酸) prompts scientists to consider how small changes in molecular structure can lead to significant alterations in biological function. This line of inquiry is essential for drug development, where small modifications to existing compounds can enhance efficacy and reduce side effects. In conclusion, ethionine (乙硫氨酸) serves as a fascinating example of how amino acid analogues can impact cellular processes. Its ability to inhibit protein synthesis and induce liver toxicity makes it a compound of interest for both basic research and clinical applications. As scientists continue to explore the multifaceted roles of ethionine (乙硫氨酸), we gain deeper insights into the complexities of metabolism and the potential for novel therapeutic strategies. The ongoing research surrounding ethionine (乙硫氨酸) not only enhances our understanding of biochemistry but also opens new avenues for addressing diseases associated with protein dysregulation and metabolic dysfunction.
乙硫氨酸是一种氨基酸类似物,在生物化学和药理学领域引起了广泛的关注。它的结构与必需氨基酸蛋氨酸相似,但在不同的位置含有一个硫原子,这改变了它的生化特性。对ethionine(乙硫氨酸)的研究揭示了它对蛋白质合成和代谢的潜在影响,使其成为研究细胞过程的科学家们的宝贵化合物。 ethionine(乙硫氨酸)最引人注目的方面之一是它作为蛋白质合成抑制剂的作用。当引入生物系统时,ethionine(乙硫氨酸)可以干扰正常的核糖体功能,核糖体是负责将mRNA翻译成蛋白质的细胞机械。这种抑制可能导致各种生理效应,包括细胞生长和分化的变化。因此,ethionine(乙硫氨酸)在癌症研究中被研究,其中特别是无控制的蛋白质合成是肿瘤细胞的标志。 除了对蛋白质合成的影响外,ethionine(乙硫氨酸)还被研究其对肝功能的影响。研究表明,ethionine(乙硫氨酸)可以在实验模型中诱导肝损伤,突显其毒理学意义。这种毒性被认为源于代谢物的积累,这些代谢物干扰正常的肝脏代谢。因此,理解ethionine(乙硫氨酸)毒性的机制对于开发减轻其有害影响的策略至关重要,同时利用其生化特性进行治疗。 此外,ethionine(乙硫氨酸)的研究超越了其生化意义;它还引发了关于氨基酸及其类似物本质的重要问题。ethionine(乙硫氨酸)独特的结构促使科学家考虑分子结构的小变化如何导致生物功能的显著变化。这一研究方向对于药物开发至关重要,因为对现有化合物的小修改可以增强疗效并减少副作用。 总之,ethionine(乙硫氨酸)作为氨基酸类似物如何影响细胞过程的迷人例子。它抑制蛋白质合成和诱导肝毒性的能力使其成为基础研究和临床应用的关注对象。随着科学家们继续探索ethionine(乙硫氨酸)的多面角色,我们对代谢的复杂性和新型治疗策略的潜力有了更深刻的理解。围绕ethionine(乙硫氨酸)的持续研究不仅增强了我们对生物化学的理解,还为解决与蛋白质失调和代谢功能障碍相关的疾病开辟了新的途径。
文章标题:ethionine的意思是什么
文章链接:https://www.liuxue886.cn/danci/354244.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论