excitons
简明释义
n. [物][电子]激子(exciton 复数)
英英释义
单词用法
束缚激子 | |
自由激子 | |
激子绝缘体 | |
激子的形成 | |
激子的动态 | |
激子和声子 | |
半导体中的激子 | |
二维材料中的激子 | |
激子能级 | |
激子的寿命 |
同义词
反义词
基态 | 当电子处于基态时,它没有被激发。 | ||
非激发态 | In a non-excited state, the system has lower energy than in an excited state. | 在非激发态下,系统的能量低于激发态。 |
例句
1.That's important because excitons like to flow from high to low energy.
这种设计是很重要的,因为,激子总是喜欢从高能量流向低能量的。
2.Strano's team is now working on ways to minimize the energy lost as excitons flow through the fiber, and on ways to generate more than one exciton per photon.
斯特拉诺小组现在正致力于研究如何将激子从纳米纤维的一层游弋到另一层时所带来的能量损失降到最小,和如何能够使一个光子可以激发不止一对激子。
3.The facts offered a criterion to distinguish the two kinds of excitons, besides magnetism resonance experiments.
这些差异为区分两类激子提供了磁共振实验之外的判据。
4.The invention aims at providing host compounds for light-emitting layers which have high excited triplet energy levels and can completely confine phosphor triplet excitons.
本发明的目的是提供具有高的激发三重态能级并完全约束了发磷光物质的三重态激发的发射层中的主体化合物。
5.Electrons and holes injected into the polymer film form bound states called excitons that break down under electrical current, emitting light as they do so.
电子和空穴注入高分子膜所形成的界态称为电子空穴对,电子空穴对冲破电流的阻碍,于是便产生了光。
6.The properties of surface excitons of a polar crystal in a magnetic field are discussed by using a perturbation method.
本文采用微扰的方法讨论了极性晶体表面的激子在磁场中的性质。
7.In semiconductor physics, the behavior of excitons 激子 is crucial for understanding how materials absorb light.
在半导体物理中,excitons 激子 的行为对理解材料如何吸收光至关重要。
8.Researchers are investigating how excitons 激子 can be used to improve solar cell efficiency.
研究人员正在调查如何利用 excitons 激子 来提高太阳能电池的效率。
9.The formation of excitons 激子 in two-dimensional materials has opened new avenues for research.
二维材料中 excitons 激子 的形成为研究开辟了新的途径。
10.Understanding the dynamics of excitons 激子 is essential for developing next-generation optoelectronic devices.
理解 excitons 激子 的动态对于开发下一代光电设备至关重要。
11.The study of excitons 激子 can lead to advancements in quantum computing technologies.
对 excitons 激子 的研究可能会推动量子计算技术的进步。
作文
In the field of condensed matter physics, the study of light-matter interactions has led to the discovery of various quasiparticles. One such intriguing quasiparticle is the excitons, which play a crucial role in understanding the optical properties of materials. Excitons are formed when an electron is excited from the valence band to the conduction band, leaving behind a hole in the valence band. This electron-hole pair is bound together by electrostatic forces, resulting in the formation of a neutral particle known as an exciton. The significance of excitons lies in their ability to transport energy without the movement of charge, making them essential for applications in optoelectronic devices and solar cells. The concept of excitons was first introduced in the 1930s, but it wasn't until the development of advanced spectroscopy techniques that researchers were able to observe and study these particles in detail. Excitons can exist in different forms, such as free excitons and bound excitons. Free excitons occur when the electron and hole are not bound together, allowing them to move independently, while bound excitons have a fixed distance between the electron and the hole due to their attractive interaction. The dynamics of excitons are influenced by various factors, including temperature, material composition, and external electromagnetic fields. For instance, at higher temperatures, thermal energy can lead to the dissociation of bound excitons into free excitons, thereby affecting the optical properties of the material. Understanding these dynamics is essential for optimizing the performance of devices that rely on excitons, such as light-emitting diodes (LEDs) and lasers. Moreover, excitons have garnered significant attention in the realm of two-dimensional materials, such as graphene and transition metal dichalcogenides (TMDs). These materials exhibit unique electronic and optical properties, and the manipulation of excitons within them could lead to groundbreaking advancements in technology. For example, researchers are exploring the potential of using excitons for information processing and quantum computing, where the coherent control of these quasiparticles could enable new functionalities. In conclusion, excitons are fascinating quasiparticles that provide insight into the fundamental processes occurring in various materials. Their unique properties and behavior make them valuable for a wide range of applications in modern technology. As research continues to evolve, our understanding of excitons will undoubtedly lead to innovative solutions and advancements in the field of materials science and engineering.
在凝聚态物理学领域,光与物质相互作用的研究导致了各种准粒子的发现。其中一个引人入胜的准粒子是激子,它在理解材料的光学特性方面发挥着关键作用。激子是在电子从价带激发到导带时形成的,此时在价带中留下一个空穴。这个电子-空穴对通过静电力结合在一起,形成一个称为激子的中性粒子。激子的重要性在于它们能够在不移动电荷的情况下传输能量,这使得它们在光电设备和太阳能电池等应用中至关重要。 激子的概念最早是在20世纪30年代提出的,但直到先进光谱技术的发展,研究人员才能够详细观察和研究这些粒子。激子可以以不同形式存在,如自由激子和束缚激子。自由激子发生在电子和空穴没有绑定在一起时,使它们能够独立移动,而束缚激子由于其吸引相互作用而在电子和空穴之间保持固定距离。 激子的动力学受到多种因素的影响,包括温度、材料成分和外部电磁场。例如,在较高温度下,热能可能导致束缚激子解离为自由激子,从而影响材料的光学特性。理解这些动力学对于优化依赖于激子的设备(如发光二极管(LED)和激光器)的性能至关重要。 此外,激子在二维材料(如石墨烯和过渡金属二硫化物(TMDs))领域也引起了重大关注。这些材料表现出独特的电子和光学特性,操控其中的激子可能会导致技术的突破性进展。例如,研究人员正在探索利用激子进行信息处理和量子计算的潜力,其中对这些准粒子的相干控制可能实现新的功能。 总之,激子是迷人的准粒子,为我们提供了对各种材料中发生的基本过程的深入了解。它们独特的特性和行为使它们在现代技术的广泛应用中具有价值。随着研究的不断发展,我们对激子的理解无疑将导致材料科学和工程领域的创新解决方案和进步。
文章标题:excitons的意思是什么
文章链接:https://www.liuxue886.cn/danci/355766.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论