exponentiation
简明释义
英[ˌekspəˌnenʃɪˈeɪʃən]美[ˌekspoʊˌnenʃɪˈeɪʃn]
n. [数] 取幂,求幂;乘方
英英释义
单词用法
指数运算 | |
指数函数 | |
平方法指数运算 | |
指数法则 | |
执行指数运算 | |
计算指数运算 | |
应用指数运算 | |
一个数的指数运算 |
同义词
反义词
开方 | 16的平方根是4。 | ||
反指数运算 | 2的3次方的反指数运算得到2。 |
例句
1.The algorithm is useful to speed up the operation for some cryptographic protocols based on multiple exponentiation.
此算法对基于多重取幂密码协议的快速运作是很有效用的。
2.Finally, the operator ** performs exponentiation; that is, it raises a number to a power.
最后,再说个运算符**,它表示乘方,就是前一个数为底数,后一个数为指数的次幂运算。
3.The paper discusses how to improve the algorithms of the exponentiation calculation and them…
文章就如何改进大数乘幂算法和取余算法以提高RSA算法的运算速度进行了探讨。
4.What about Iran? The nuclear standoff still persists and fears will exponentiation of prices. According to The Daily Telegraph, Iran already raised petrol price by 25%.
伊朗又怎样呢?核问题的开发和担忧支持原油价格走高,每日电讯报道伊朗已经提高了25%的原油价格。
5.Lie's Theory Within the framework of Lie' Theory, we associate infinitesimal transformations making up a Lie algebra with finite operations which are obtained from the previous ones by exponentiation.
另外,群体特性通过微分运算及其逆运算所得到的李代数的代数结构而得到了解释。
6.Modul ar exponentiation algorithm scans encryption from right to sot, so t wo modular multiplications can be processed parallelly.
模幂算法采用从右到左扫描指数的方法,可以使得两次模乘运算同时进行。
7.In mathematics, exponentiation is a fundamental operation that involves raising a number to a power.
在数学中,指数运算是一种基本操作,它涉及将一个数字提升到某个幂。
8.The process of exponentiation can be visualized using graphs, showing how quickly values grow.
通过图形可以直观地展示指数运算的过程,显示出数值增长的速度。
9.Computer algorithms often rely on exponentiation for tasks like encryption and hashing.
计算机算法通常依赖于指数运算来执行加密和哈希等任务。
10.In programming, you can use built-in functions to perform exponentiation easily.
在编程中,你可以使用内置函数轻松执行指数运算。
11.The concept of exponentiation is crucial in fields such as physics and engineering.
在物理和工程等领域,指数运算的概念至关重要。
作文
In the realm of mathematics, certain operations stand out due to their complexity and significance. One such operation is exponentiation, which involves raising a number, known as the base, to the power of an exponent. This concept is not only fundamental in mathematics but also plays a crucial role in various fields such as computer science, engineering, and finance. Understanding exponentiation can enhance one's ability to solve complex equations and model real-world scenarios effectively. To illustrate the concept of exponentiation, consider the expression 2^3. Here, 2 is the base, and 3 is the exponent. The operation signifies that we multiply 2 by itself three times: 2 × 2 × 2, which results in 8. This simple example demonstrates how exponentiation works and highlights its potential to produce large numbers quickly. As the exponent increases, the result grows exponentially, which is why this operation is commonly used in algorithms and calculations involving large datasets. In computer science, exponentiation is particularly relevant when analyzing the efficiency of algorithms. For instance, algorithms with time complexities that include exponential growth can become impractical for large inputs. An example of this is the brute-force method used to solve combinatorial problems, where the number of possible solutions can be represented as a power of 2, leading to a rapid increase in computation time as the input size grows. Thus, understanding exponentiation helps computer scientists identify more efficient approaches to problem-solving. Moreover, exponentiation is not limited to theoretical applications; it has practical implications in fields like finance. For instance, compound interest is calculated using exponentiation. The formula A = P(1 + r/n)^(nt) demonstrates how money grows over time based on the principal amount (P), the interest rate (r), the number of times interest is compounded per year (n), and the number of years the money is invested (t). In this context, exponentiation is essential for predicting future values of investments, showcasing its importance in everyday financial decisions. Despite its significance, many students struggle with the concept of exponentiation due to its abstract nature. To overcome these challenges, educators can employ visual aids and interactive tools that demonstrate the effects of different exponents. For example, graphing functions that involve exponentiation can help students visualize how quickly values can escalate. Additionally, incorporating real-life examples, such as population growth or viral spread, can make the concept more relatable and easier to grasp. In conclusion, exponentiation is a powerful mathematical operation that extends beyond the confines of pure mathematics. Its applications in computer science, finance, and various other fields underline its importance in both theoretical and practical contexts. By fostering a deeper understanding of exponentiation, students and professionals alike can enhance their problem-solving skills and apply this knowledge to real-world situations. As we continue to navigate an increasingly complex world, the ability to comprehend and utilize exponentiation will undoubtedly remain a valuable asset.
在数学领域,某些运算因其复杂性和重要性而脱颖而出。其中一个运算是指数运算,它涉及将一个数字(称为底数)提升到一个指数的幂。这个概念不仅在数学中是基础,而且在计算机科学、工程和金融等多个领域也发挥着至关重要的作用。理解指数运算可以增强一个人有效解决复杂方程和建模现实场景的能力。 为了说明指数运算的概念,考虑表达式2^3。在这里,2是底数,3是指数。该操作意味着我们将2自乘三次:2 × 2 × 2,结果为8。这个简单的例子展示了指数运算的工作原理,并突显了其快速产生大数字的潜力。随着指数的增加,结果呈指数级增长,这就是为什么这个操作通常用于算法和涉及大型数据集的计算。 在计算机科学中,指数运算特别相关,因为它有助于分析算法的效率。例如,包含指数增长时间复杂度的算法对于大输入可能变得不切实际。一个例子是用于解决组合问题的暴力方法,其中可能的解决方案数量可以表示为2的幂,导致随着输入规模的增长,计算时间迅速增加。因此,理解指数运算有助于计算机科学家识别更有效的问题解决方法。 此外,指数运算并不限于理论应用;它在金融等领域具有实际意义。例如,复利的计算使用指数运算。公式A = P(1 + r/n)^(nt)展示了资金如何随着时间的推移而增长,基于本金(P)、利率(r)、每年计息次数(n)和投资年限(t)。在这个背景下,指数运算对于预测投资的未来价值至关重要,展示了它在日常财务决策中的重要性。 尽管指数运算的重要性显而易见,但许多学生由于其抽象性而在理解上遇到困难。为克服这些挑战,教育者可以使用视觉辅助工具和互动工具,展示不同指数的效果。例如,绘制涉及指数运算的函数图形可以帮助学生可视化值迅速升级的方式。此外,将现实生活中的例子,如人口增长或病毒传播,融入教学中,可以使这一概念更具关联性,更易于掌握。 总之,指数运算是一个强大的数学运算,它超越了纯数学的范畴。它在计算机科学、金融及其他多个领域的应用强调了它在理论和实践中的重要性。通过加深对指数运算的理解,学生和专业人士都可以增强他们的问题解决能力,并将这一知识应用于现实世界的情境中。随着我们继续应对一个日益复杂的世界,理解和利用指数运算的能力无疑将继续成为一项宝贵的资产。
文章标题:exponentiation的意思是什么
文章链接:https://www.liuxue886.cn/danci/357214.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论