extranuclear
简明释义
英[ˌɛkstrəˈnuklɪr]美[ˌɛkstrəˈnuklɪr]
adj. 细胞核外的,胞质的;核外的
英英释义
单词用法
同义词
核周的 | Perinuclear space refers to the area surrounding the nucleus. | 核周空间是指环绕细胞核的区域。 | |
细胞质的 | 细胞质成分对细胞功能至关重要。 | ||
细胞外的 | Extracellular matrix plays a critical role in tissue structure. | 细胞外基质在组织结构中起着关键作用。 |
反义词
核的 | 核膜包围着细胞的核。 | ||
细胞内的 | 细胞内信号传递对细胞通信至关重要。 |
例句
1.The results suggests that the PHA stimulation may affect both intranuclear and extranuclear DBP signals, and DBP may involve lymphoblastogenesis and inter-cellular genetic information transduction.
PHA刺激对淋巴细胞核内、外DBP的信号均有增高作用; DBP可能参与淋巴细胞的母细胞转化以及细胞间遗传信息的传递。
2.The results suggests that the PHA stimulation may affect both intranuclear and extranuclear DBP signals, and DBP may involve lymphoblastogenesis and inter-cellular genetic information transduction.
PHA刺激对淋巴细胞核内、外DBP的信号均有增高作用; DBP可能参与淋巴细胞的母细胞转化以及细胞间遗传信息的传递。
3.The contribution of intranuclear radionuclides to mean absorbed dose was larger than that of extranuclear ones.
细胞核内的核素对细胞核吸收剂量的贡献远大于细胞质中的核素。
4.Small molecule atomic particles, atoms extranuclear electron transfer.
分子原子小粒子,原子核外电子转。
5.The research focused on the role of extranuclear 细胞核外的 factors in gene expression.
这项研究集中于
6.In certain types of cells, extranuclear 细胞核外的 DNA can play a crucial role in metabolism.
在某些类型的细胞中,细胞核外的DNA在新陈代谢中可以发挥关键作用。
7.The study revealed that extranuclear 细胞核外的 signals are essential for cell communication.
研究表明,细胞核外的信号对细胞通信至关重要。
8.Researchers discovered that extranuclear 细胞核外的 RNA molecules are involved in regulating cellular functions.
研究人员发现,细胞核外的RNA分子参与调节细胞功能。
9.The effects of extranuclear 细胞核外的 elements on cellular aging were examined in this experiment.
本实验研究了
作文
In the field of biology, the term extranuclear refers to anything that exists outside the nucleus of a cell. This concept is crucial for understanding how genetic material and cellular functions are organized. While much of our focus in genetics has traditionally been on the nuclear DNA, recent research has highlighted the importance of extranuclear elements, particularly those found in organelles such as mitochondria and chloroplasts. These organelles contain their own DNA, which is separate from the nuclear DNA and plays a vital role in energy production and other essential cellular processes. The study of extranuclear genetics has opened new avenues for research, especially in the context of diseases that are influenced by mitochondrial dysfunction. For instance, conditions such as mitochondrial myopathy and certain forms of diabetes have been linked to mutations in the extranuclear DNA found in mitochondria. Understanding these relationships can lead to better diagnostic tools and treatment options for patients suffering from these conditions. Moreover, the concept of extranuclear inheritance challenges traditional Mendelian genetics, which primarily focuses on nuclear inheritance patterns. In contrast, extranuclear inheritance refers to the transmission of traits that are not governed by the nuclear genome. This type of inheritance is often maternal, as the egg cell contributes the majority of the cytoplasm—and thus the extranuclear organelles—during fertilization. As a result, offspring may inherit characteristics based on the health and genetic makeup of the mother’s mitochondria or plastids. Additionally, the implications of extranuclear factors extend beyond individual health. In agricultural science, for example, understanding extranuclear inheritance can aid in crop improvement. Scientists can manipulate the extranuclear genomes of plants to enhance traits such as drought resistance or increased photosynthetic efficiency. By doing so, researchers are not only improving food security but also contributing to sustainable agricultural practices. As we delve deeper into the world of extranuclear biology, it becomes clear that this area of study is rich with potential. The interaction between nuclear and extranuclear elements is complex, and ongoing research aims to unravel these connections. For example, epigenetic modifications in the nuclear genome can influence the behavior of extranuclear organelles, showcasing a dynamic interplay that affects cellular function and organismal health. In conclusion, the term extranuclear encompasses a significant aspect of cellular biology that is often overlooked. It invites us to broaden our perspective on genetics and inheritance, encouraging a more holistic view of how traits are passed down and how they affect health and development. As research continues to evolve, the importance of extranuclear elements will undoubtedly increase, paving the way for innovative treatments and advancements in various scientific fields. By embracing the complexities of extranuclear biology, we can gain a deeper understanding of life itself and improve our approach to health and sustainability.
在生物学领域,术语extranuclear指的是存在于细胞核之外的任何事物。这个概念对于理解遗传物质和细胞功能的组织至关重要。虽然我们在遗传学上的关注点传统上集中在核DNA上,但最近的研究突出了extranuclear元素的重要性,特别是在线粒体和叶绿体等细胞器中。这些细胞器含有自己的DNA,这与核DNA是分开的,并在能量生产和其他基本细胞过程中发挥着重要作用。 对extranuclear遗传学的研究打开了新的研究途径,尤其是在与线粒体功能障碍相关的疾病背景下。例如,线粒体肌病和某些类型的糖尿病等病症已被发现与线粒体中extranuclear DNA的突变有关。理解这些关系可以为患有这些病症的患者提供更好的诊断工具和治疗选择。 此外,extranuclear遗传的概念挑战了传统的孟德尔遗传学,后者主要关注核遗传模式。相比之下,extranuclear遗传指的是不受核基因组支配的性状传递。这种类型的遗传通常是母系的,因为卵细胞在受精过程中贡献了大部分细胞质,因此也包括extranuclear细胞器。因此,后代可能会根据母亲线粒体或质体的健康和遗传构成继承特征。 此外,extranuclear因素的影响超越了个体健康。在农业科学中,例如,理解extranuclear遗传可以帮助作物改良。科学家可以操纵植物的extranuclear基因组,以增强抗旱性或提高光合作用效率等特征。通过这样做,研究人员不仅改善了粮食安全,还促进了可持续农业实践。 随着我们深入探讨extranuclear生物学的世界,显然这一研究领域充满潜力。核与extranuclear元素之间的相互作用是复杂的,正在进行的研究旨在揭示这些联系。例如,核基因组中的表观遗传修饰可以影响extranuclear细胞器的行为,展示出影响细胞功能和生物健康的动态相互作用。 总之,术语extranuclear涵盖了一个重要的细胞生物学方面,常常被忽视。它邀请我们拓宽对遗传和遗传的视角,鼓励我们以更全面的视角看待特征的传递及其对健康和发展的影响。随着研究的不断发展,extranuclear元素的重要性无疑会增加,为各个科学领域的创新治疗和进步铺平道路。通过接受extranuclear生物学的复杂性,我们可以更深入地理解生命本身,并改善我们对健康和可持续性的看法。
文章标题:extranuclear的意思是什么
文章链接:https://www.liuxue886.cn/danci/357884.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论