factorize
简明释义
vt. 因式分解;把复杂计算分解为基本运算
第 三 人 称 单 数 f a c t o r i z e s
现 在 分 词 f a c t o r i z i n g
过 去 式 f a c t o r i z e d
过 去 分 词 f a c t o r i z e d
英英释义
单词用法
对多项式进行因式分解 | |
完全因式分解 | |
通过分组进行因式分解 | |
使用二次公式进行因式分解 | |
因式分解该表达式 | |
分解为线性因子 | |
相对于x进行因式分解 | |
因式分解该方程 |
同义词
分解 | 我们需要将多项式分解为其因子。 | ||
分解 | 你能把这个表达式分解成更简单的因子吗? | ||
因式分解 | 要解这个方程,我们必须先进行因式分解。 |
反义词
简化 | 我们需要在解方程之前简化它。 | ||
合并 | 让我们把这两个分数合并成一个。 |
例句
1.In this exercise you have to factorize a given number.
在此练习中您要对一个给定的数字作因数分解。
2.In this exercise you have to factorize a given number.
在此练习中您要对一个给定的数字作因数分解。
3.In algebra class, we learned how to factorize 因式分解 quadratic equations.
在代数课上,我们学习了如何<因式分解>二次方程。
4.To solve the polynomial, we need to factorize 因式分解 it into simpler components.
要解决这个多项式,我们需要将其<因式分解>为更简单的部分。
5.The first step in simplifying the expression is to factorize 因式分解 the numerator.
简化表达式的第一步是<因式分解>分子。
6.You can factorize 因式分解 numbers to find their prime factors.
你可以<因式分解>数字以找到它们的质因数。
7.In computer science, algorithms often require us to factorize 因式分解 large integers for encryption.
在计算机科学中,算法通常要求我们<因式分解>大整数以进行加密。
作文
Mathematics is a subject that requires both critical thinking and problem-solving skills. One of the essential concepts in mathematics is the process of factorize, which means to break down a number or an algebraic expression into its constituent parts, known as factors. Understanding how to factorize is crucial for solving equations and simplifying expressions, making it a fundamental skill for students. In this essay, I will discuss the importance of factorize in mathematics, its applications, and strategies to master this concept. First and foremost, factorize is a vital skill in algebra. When students learn to factorize polynomials, they gain the ability to solve quadratic equations more efficiently. For example, consider the quadratic expression x² - 5x + 6. By applying the factorize technique, we can express this polynomial as (x - 2)(x - 3). This factorization not only makes it easier to find the roots of the equation but also allows us to understand the relationships between the coefficients and the roots. Hence, mastering the skill of factorize is essential for anyone pursuing higher-level mathematics. Moreover, factorize plays a significant role in real-world applications. For instance, in physics, when dealing with projectile motion, one might encounter quadratic equations that require factorize to analyze the trajectory of an object. Similarly, in economics, understanding how to factorize functions can help in optimizing profit and costs. Thus, the ability to factorize is not just an academic exercise; it has practical implications in various fields. To effectively master the concept of factorize, students can employ several strategies. First, practicing with different types of polynomials is crucial. Students should start with simple binomials and gradually progress to more complex trinomials. This step-by-step approach helps build confidence and reinforces understanding. Additionally, utilizing visual aids, such as graphs, can enhance comprehension. By plotting the polynomial and observing its intercepts, students can gain insights into the factorization process. Furthermore, collaboration with peers can be beneficial. Working in groups allows students to share different methods and approaches to factorize problems, fostering a deeper understanding of the topic. Teachers can also facilitate discussions around common misconceptions and provide targeted feedback to help students improve their skills. In conclusion, the ability to factorize is a fundamental aspect of mathematics that extends beyond the classroom. It is a skill that empowers students to solve complex equations, apply mathematical concepts in real-world scenarios, and develop critical thinking skills. By embracing effective learning strategies and practicing regularly, students can master the art of factorize and unlock new levels of mathematical understanding. As they continue their educational journey, the importance of factorize will undoubtedly remain a cornerstone of their mathematical toolkit, guiding them through advanced studies and practical applications alike.
数学是一门需要批判性思维和解决问题能力的学科。factorize这个过程是数学中的一个基本概念,它意味着将一个数字或代数表达式分解成其组成部分,称为因子。理解如何factorize对于解决方程和简化表达式至关重要,使其成为学生必须掌握的基本技能。在这篇文章中,我将讨论factorize在数学中的重要性、它的应用以及掌握这一概念的策略。 首先,factorize是代数中的一项重要技能。当学生学习对多项式进行factorize时,他们能够更有效地解决二次方程。例如,考虑二次表达式x² - 5x + 6。通过应用factorize技术,我们可以将这个多项式表示为(x - 2)(x - 3)。这种因式分解不仅使得找到方程的根变得更加容易,而且还让我们理解系数与根之间的关系。因此,掌握factorize这一技能对于任何追求高等数学的人来说都是至关重要的。 此外,factorize在实际应用中也扮演着重要角色。例如,在物理学中,当处理抛体运动时,可能会遇到需要factorize的二次方程来分析物体的轨迹。同样,在经济学中,理解如何factorize函数可以帮助优化利润和成本。因此,能够factorize不仅仅是一种学术练习;它在各个领域都有实际意义。 为了有效掌握factorize的概念,学生可以采用几种策略。首先,练习不同类型的多项式是至关重要的。学生应从简单的二项式开始,逐渐过渡到更复杂的三项式。这种循序渐进的方法有助于建立信心并巩固理解。此外,利用视觉辅助工具,如图表,可以增强理解。通过绘制多项式并观察其截距,学生可以获得对因式分解过程的深入见解。 此外,与同伴的合作也很有益。小组合作使学生能够分享不同的factorize方法和思路,促进对该主题的更深入理解。教师还可以促进关于常见误解的讨论,并提供针对性的反馈,以帮助学生提高技能。 总之,能够factorize是数学的一个基本方面,它超越了课堂。这是一项使学生能够解决复杂方程、在现实场景中应用数学概念并发展批判性思维能力的技能。通过接受有效的学习策略并定期练习,学生可以掌握factorize的艺术,并解锁新的数学理解水平。在他们继续教育的旅程中,factorize的重要性无疑将继续作为他们数学工具箱的基石,引导他们通过高级研究和实际应用。
文章标题:factorize的意思是什么
文章链接:https://www.liuxue886.cn/danci/358616.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论