ferredoxin
简明释义
英[ˌferɪˈdɒksɪn]美[ˌferɪˈdɑːksɪn]
n. [生化] 铁氧化还原蛋白
英英释义
单词用法
ferredoxin电子转移 | |
ferredoxin蛋白 | |
ferredoxin还原酶 | |
ferredoxin代谢 | |
铁硫ferredoxin | |
类似ferredoxin的蛋白 | |
通过ferredoxin介导的反应 | |
ferredoxin途径 |
同义词
反义词
氧化剂 | Hydrogen peroxide acts as an oxidizing agent in many chemical reactions. | 过氧化氢在许多化学反应中作为氧化剂。 | |
电子受体 | In cellular respiration, oxygen serves as the primary electron acceptor. | 在细胞呼吸中,氧气作为主要的电子受体。 |
例句
1.Ferredoxin: an iron-containing protein present in green plants and certain anaerobic bacteria that functions in electron transport reactions in biochemical processes such as photosynthesis.
铁氧化还原蛋白:绿色植物和某些抗生菌提供的一种含铁蛋白,在生化过程的电子传送反应中起作用,如光合作用。
2.Ferredoxin: an iron-containing protein present in green plants and certain anaerobic bacteria that functions in electron transport reactions in biochemical processes such as photosynthesis.
铁氧化还原蛋白:绿色植物和某些抗生菌提供的一种含铁蛋白,在生化过程的电子传送反应中起作用,如光合作用。
3.Substance X in turn donates its electron to an iron-containing protein called ferredoxin.
X物质又将它的电子转移给一种含铁的蛋白质,称为铁氧还蛋白。
4.Substance X, in turn, donates its electron to an iron-containing protein called ferredoxin.
X物质又将它的电子转移给一种含铁的蛋白质,称为铁氧还蛋白。
5.In photosynthesis, the electron transport chain involves proteins like ferredoxin to transfer electrons efficiently.
在光合作用中,电子传递链涉及像铁氧还蛋白这样的蛋白质以有效地转移电子。
6.Researchers found that ferredoxin plays a crucial role in nitrogen fixation in certain bacteria.
研究人员发现,铁氧还蛋白在某些细菌的氮固定中起着关键作用。
7.The study showed that ferredoxin can be used as a biomarker for specific metabolic pathways.
研究表明,铁氧还蛋白可以作为特定代谢途径的生物标志物。
8.In the lab, scientists used ferredoxin to investigate electron transfer mechanisms in chloroplasts.
在实验室,科学家们使用铁氧还蛋白来研究叶绿体中的电子转移机制。
9.The interaction between ferredoxin and other proteins is essential for energy production in cells.
与其他蛋白质之间的相互作用对细胞内的能量生产至关重要,尤其是铁氧还蛋白。
作文
Ferredoxin is a crucial protein found in various organisms, playing an essential role in electron transfer processes. This small but significant protein is composed of iron and sulfur, forming a cluster that enables it to carry out its functions effectively. The presence of ferredoxin is vital in both photosynthetic and non-photosynthetic organisms, highlighting its importance in biochemical pathways. For instance, in plants, ferredoxin participates in the light reactions of photosynthesis, where it helps in transferring electrons from photosystem I to NADP+, ultimately leading to the formation of NADPH. This process is fundamental for the conversion of solar energy into chemical energy, which sustains life on Earth. Moreover, ferredoxin is involved in various metabolic processes beyond photosynthesis. In anaerobic bacteria, for example, ferredoxin plays a key role in nitrogen fixation, a process that converts atmospheric nitrogen into ammonia, which can be utilized by living organisms. This function is critical for maintaining the nitrogen cycle, ensuring that essential nutrients are available for plant growth. Additionally, ferredoxin is also implicated in the metabolism of certain fatty acids and in the biosynthesis of various secondary metabolites. The structure of ferredoxin consists of a cluster of iron-sulfur (Fe-S) complexes, which are responsible for its electron transfer capabilities. These clusters can vary in their composition, leading to different types of ferredoxins, each adapted to specific functions in various organisms. The ability of ferredoxin to accept and donate electrons makes it a versatile component in many redox reactions, contributing to cellular respiration and energy production. Research on ferredoxin has expanded our understanding of its role in bioenergetics and metabolism. Scientists have been studying the mechanisms by which ferredoxin interacts with other proteins and enzymes, shedding light on its involvement in complex biochemical pathways. For instance, the interaction between ferredoxin and ferredoxin-dependent enzymes is crucial for the regulation of metabolic fluxes, influencing how cells respond to changes in their environment. In conclusion, ferredoxin is not merely a biochemical curiosity; it is a fundamental player in the intricate web of life. Its roles in photosynthesis, nitrogen fixation, and metabolic processes underscore its significance in sustaining ecosystems. As research continues to unveil the complexities of ferredoxin's functions, we gain deeper insights into the molecular machinery that supports life. Understanding these processes not only enhances our knowledge of biology but also has potential implications for biotechnology and agriculture, where harnessing the power of ferredoxin could lead to advancements in sustainable practices. Therefore, recognizing the importance of ferredoxin (铁氧还原蛋白) is essential for appreciating the delicate balance of life on our planet.
铁氧还原蛋白是一种在各种生物中发现的关键蛋白质,在电子转移过程中发挥着重要作用。这个小而重要的蛋白质由铁和硫组成,形成一个簇,使其能够有效地执行其功能。铁氧还原蛋白的存在在光合和非光合生物中都是至关重要的,突显了它在生化路径中的重要性。例如,在植物中,铁氧还原蛋白参与光合作用的光反应,在那里它有助于将电子从光系统I转移到NADP+,最终导致NADPH的形成。这个过程对于将太阳能转化为化学能是基础的,这维持了地球上的生命。 此外,铁氧还原蛋白还参与了光合作用之外的各种代谢过程。例如,在厌氧细菌中,铁氧还原蛋白在氮固定中起着关键作用,这个过程将大气中的氮转化为氨,生物可以利用这种氨。这一功能对于维持氮循环至关重要,确保植物生长所需的基本营养素可用。此外,铁氧还原蛋白还与某些脂肪酸的代谢及各种次级代谢物的生物合成有关。 铁氧还原蛋白的结构由铁硫(Fe-S)复合物的簇组成,这些复合物负责其电子转移能力。这些簇的组成可以有所不同,导致不同类型的铁氧还原蛋白,每种蛋白质都适应于特定的功能在不同的生物中。铁氧还原蛋白接受和捐赠电子的能力使其成为许多氧化还原反应中的多功能组成部分,促进细胞呼吸和能量生产。 对铁氧还原蛋白的研究扩展了我们对其在生物能量学和代谢中作用的理解。科学家们一直在研究铁氧还原蛋白与其他蛋白质和酶相互作用的机制,揭示其在复杂生化途径中的作用。例如,铁氧还原蛋白与铁氧还原依赖性酶之间的相互作用对代谢流的调节至关重要,影响细胞如何响应环境变化。 总之,铁氧还原蛋白不仅仅是生化好奇心;它是生命复杂网络中的基本参与者。它在光合作用、氮固定和代谢过程中的角色突显了它在维持生态系统中的重要性。随着研究不断揭示铁氧还原蛋白功能的复杂性,我们对支持生命的分子机制有了更深入的了解。理解这些过程不仅增强了我们对生物学的知识,还有可能对生物技术和农业产生影响,利用铁氧还原蛋白的力量可能会导致可持续实践的进步。因此,认识到铁氧还原蛋白(ferredoxin)的重要性对于欣赏我们星球上生命的微妙平衡是至关重要的。
文章标题:ferredoxin的意思是什么
文章链接:https://www.liuxue886.cn/danci/360790.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论