ferrimagnetic
简明释义
英[ferɪmæɡˈnetɪk]美[ferɪmæɡˈnetɪk]
adj. 铁淦氧磁的;亚铁磁的
n. 铁淦氧磁物
英英释义
单词用法
铁磁性物质 | |
铁磁性化合物 | |
铁磁性特性 | |
铁磁性相互作用 | |
表现出铁磁性行为 | |
表征铁磁性系统 | |
研究铁磁性现象 | |
分析铁磁性材料 |
同义词
反铁磁性 | Ferrimagnetic materials exhibit a net magnetic moment due to unequal opposing magnetic moments. | 铁磁性材料由于不等的相对磁矩而表现出净磁矩。 |
反义词
例句
1.In the two-sublattice model, the Heisenberg exchange interaction Hamiltonian of the simple ferrimagnetic crystal can be made diagonalization by the use of HP, Fourier and Bogoliubov transformation.
在双子格模型中,运用HP变换、付里叶变换和玻戈留波夫变换,将简单亚铁磁体的海森伯交换作用哈密顿量对角化。
2.In the two-sublattice model, the Heisenberg exchange interaction Hamiltonian of the simple ferrimagnetic crystal can be made diagonalization by the use of HP, Fourier and Bogoliubov transformation.
在双子格模型中,运用HP变换、付里叶变换和玻戈留波夫变换,将简单亚铁磁体的海森伯交换作用哈密顿量对角化。
3.Theoretical studies for the energy spectra of double-layer ferrimagnetic superlattice were carried out.
对双层亚铁磁超晶格的能谱进行理论研究。
4.The material used in the transformer is ferrimagnetic 铁磁性, allowing for efficient energy transfer.
变压器中使用的材料是铁磁性,可以实现高效的能量传输。
5.Scientists are studying ferrimagnetic 铁磁性 materials for their potential use in data storage devices.
科学家们正在研究铁磁性材料,以期在数据存储设备中应用。
6.The ferrimagnetic 铁磁性 properties of the compound make it suitable for microwave applications.
该化合物的铁磁性特性使其适合用于微波应用。
7.In magnetic refrigeration, ferrimagnetic 铁磁性 materials can enhance the cooling process.
在磁制冷中,铁磁性材料可以增强冷却过程。
8.The research focused on the temperature dependence of ferrimagnetic 铁磁性 materials.
研究集中在铁磁性材料的温度依赖性上。
作文
The study of materials and their magnetic properties is a fascinating field that combines physics, chemistry, and engineering. One particular type of material that has garnered significant interest in recent years is known as ferrimagnetic. These materials exhibit unique magnetic behavior that sets them apart from other types of magnetic materials, such as ferromagnetic and paramagnetic substances. To understand what ferrimagnetic materials are, we first need to delve into the basics of magnetism. Magnetism arises from the motion of electrons within atoms, and it can be categorized into several types based on how these atomic moments align with each other. In ferromagnetic materials, like iron, the magnetic moments of the atoms align parallel to one another, resulting in a strong net magnetic field. This alignment occurs even in the absence of an external magnetic field, which is why ferromagnetic materials can be permanently magnetized. On the other hand, paramagnetic materials have magnetic moments that are randomly oriented in the absence of an external magnetic field. However, when subjected to an external magnetic field, these moments tend to align with the field, albeit weakly. This means that paramagnetic materials do not retain any magnetization once the external field is removed. Now, ferrimagnetic materials present a different scenario altogether. They consist of two or more types of magnetic ions or atoms that have unequal magnetic moments. This results in a situation where the magnetic moments of the different ions or atoms partially cancel each other out. For instance, in a typical ferrimagnetic material, one type of ion might have a strong magnetic moment while another has a weaker one. As a result, the overall magnetization is not zero, but it is also not as strong as in ferromagnetic materials. This unique property allows ferrimagnetic materials to be useful in various applications, particularly in the field of electronics and data storage. One of the most well-known examples of a ferrimagnetic material is magnetite (Fe3O4), which is naturally occurring and has been used for centuries in navigation due to its magnetic properties. In modern technology, ferrimagnetic materials are utilized in magnetic sensors, transformers, and even in microwave devices. Their ability to operate effectively at high frequencies makes them particularly valuable in the telecommunications industry. Moreover, researchers are exploring new ferrimagnetic compounds that could lead to advancements in spintronics, a cutting-edge technology that leverages the intrinsic spin of electrons, in addition to their charge, for information processing. This could potentially lead to faster and more efficient electronic devices. In conclusion, ferrimagnetic materials play a crucial role in both fundamental research and practical applications. Understanding their properties not only enhances our knowledge of magnetism but also opens up new avenues for technological innovation. As we continue to explore the fascinating world of magnetic materials, the significance of ferrimagnetic substances will undoubtedly become more pronounced, paving the way for future discoveries and advancements in science and technology.
对材料及其磁性特性的研究是一个迷人的领域,结合了物理学、化学和工程学。近年来,特别引起关注的一种材料被称为铁磁性。这些材料表现出独特的磁性行为,使它们与其他类型的磁性材料(如铁磁性和顺磁性物质)区分开来。 要理解铁磁性材料是什么,我们首先需要深入了解磁性的基础知识。磁性源于原子内部电子的运动,可以根据这些原子矩如何相互排列进行分类。在铁磁性材料中,如铁,原子的磁矩平行排列,从而产生强大的净磁场。这种排列即使在没有外部磁场的情况下也会发生,这就是为什么铁磁性材料可以被永久磁化。 另一方面,顺磁性材料的磁矩在没有外部磁场的情况下随机定向。然而,当受到外部磁场的影响时,这些矩会倾向于与该场对齐,尽管这种对齐很微弱。这意味着顺磁性材料在外部场移除后不会保留任何磁化。 现在,铁磁性材料则呈现出完全不同的情况。它们由两种或多种类型的磁离子或原子组成,这些离子或原子的磁矩不相等。这导致不同离子的磁矩部分抵消。例如,在典型的铁磁性材料中,一种离子可能具有强磁矩,而另一种则较弱。因此,整体磁化并不是零,但也没有像铁磁性材料那样强。这一独特特性使得铁磁性材料在各个应用中都非常有用,特别是在电子和数据存储领域。 最著名的铁磁性材料之一是磁铁矿(Fe3O4),它是自然存在的,几个世纪以来一直因其磁性特性用于导航。在现代技术中,铁磁性材料被用于磁传感器、变压器,甚至微波设备。它们在高频下有效工作的能力使其在电信行业中特别有价值。 此外,研究人员正在探索新的铁磁性化合物,这可能会推动自旋电子学的发展,自旋电子学是一项前沿技术,利用电子的内在自旋以及其电荷进行信息处理。这可能导致更快、更高效的电子设备。 总之,铁磁性材料在基础研究和实际应用中都发挥着至关重要的作用。理解它们的特性不仅增强了我们对磁性的认识,还为技术创新开辟了新的途径。随着我们继续探索磁性材料的迷人世界,铁磁性物质的重要性无疑会愈加显著,为未来的发现和科学技术进步铺平道路。
文章标题:ferrimagnetic的意思是什么
文章链接:https://www.liuxue886.cn/danci/360811.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论