ferrimagnetism
简明释义
英[ˌferɪmæɡˈnɪtɪzəm]美[ˌferɪmæɡˈnetɪzəm]
n. [物] 铁氧体磁性
英英释义
单词用法
铁磁相 | |
铁磁性的温度 | |
铁磁排序 | |
铁磁转变 | |
强铁磁性 | |
弱铁磁性 | |
铁磁性和反铁磁性 | |
表现出铁磁性的材料 |
同义词
反义词
例句
1.There exists a large difference in the line width of uniform resonance estimated for various ferrites by making use of our simplified model of ferrimagnetism.
用我们的简化亚铁磁模型对各种铁氧体算得的一致共振线宽差别很大。
2.There exists a large difference in the line width of uniform resonance estimated for various ferrites by making use of our simplified model of ferrimagnetism.
用我们的简化亚铁磁模型对各种铁氧体算得的一致共振线宽差别很大。
3.With increasing temperature, the samples undergo a transition from ferrimagnetism to paramagnetism.
随温度升高,样品由亚铁磁性逐渐过渡到顺磁性。
4.The study of ferrimagnetism has led to advancements in magnetic materials used in electronics.
对铁磁性的研究促进了用于电子产品的磁性材料的发展。
5.In certain compounds, ferrimagnetism can occur due to the unequal alignment of magnetic moments.
在某些化合物中,铁磁性可能由于磁矩的不等对齐而发生。
6.The presence of ferrimagnetism in materials makes them useful for data storage applications.
材料中存在的铁磁性使其在数据存储应用中非常有用。
7.Research on ferrimagnetism is crucial for developing new types of sensors.
对铁磁性的研究对开发新型传感器至关重要。
8.Materials exhibiting ferrimagnetism often have complex crystal structures.
表现出铁磁性的材料通常具有复杂的晶体结构。
作文
In the realm of condensed matter physics, the study of magnetic materials is crucial for understanding various phenomena and applications. One intriguing type of magnetism is known as ferrimagnetism, which occurs in certain materials where the magnetic moments of atoms align in opposite directions but are unequal in magnitude. This results in a net magnetic moment, making these materials exhibit magnetic properties similar to ferromagnets, but with distinct characteristics. Ferrimagnetism is commonly found in ferrites, which are ceramic compounds composed of iron oxide mixed with other metal oxides. These materials play a significant role in various technological applications, including magnetic recording media, transformers, and microwave devices. The fundamental mechanism behind ferrimagnetism can be understood through the concept of exchange interactions between neighboring ions. In ferrimagnetic materials, there are typically two different types of ions with opposing magnetic moments. For example, in the case of magnetite (Fe3O4), the iron ions exist in two different oxidation states: Fe2+ and Fe3+. The Fe2+ ions have a larger magnetic moment compared to the Fe3+ ions, leading to an imbalance when they align antiparallel to each other. This imbalance results in a net magnetic moment, a hallmark of ferrimagnetism. One of the fascinating aspects of ferrimagnetism is its temperature dependence. As the temperature of a ferrimagnetic material increases, thermal agitation disrupts the orderly alignment of magnetic moments, which can lead to a transition to a paramagnetic state at a specific temperature known as the Curie temperature. Below this temperature, the material retains its magnetic properties, while above it, the thermal energy overcomes the magnetic interactions, resulting in a loss of magnetization. The applications of ferrimagnetism are vast and varied. In electronics, ferrimagnetic materials are used in inductors and transformers due to their high magnetic permeability and low electrical conductivity. Additionally, they are employed in microwave technology, where ferrites serve as isolators and circulators, enabling efficient signal transmission and preventing interference. Moreover, the field of data storage has greatly benefited from ferrimagnetism, as these materials are essential components in magnetic hard drives and magnetic tapes, allowing for the reliable storage and retrieval of information. In conclusion, ferrimagnetism is a fascinating phenomenon that bridges the gap between ferromagnetism and antiferromagnetism. Its unique properties and applications make it an important area of study within material science and engineering. As researchers continue to explore the intricacies of ferrimagnetism, we can expect further advancements in technology that leverage the magnetic properties of these remarkable materials. Understanding ferrimagnetism not only enriches our knowledge of magnetic phenomena but also paves the way for innovative applications that could transform various industries.
在凝聚态物理学领域,磁性材料的研究对于理解各种现象和应用至关重要。一种引人入胜的磁性类型被称为铁磁性,它发生在某些材料中,这些材料的原子的磁矩以相反方向排列,但大小不相等。这导致净磁矩的产生,使这些材料表现出类似于铁磁体的磁性,但具有不同的特征。铁磁性通常存在于铁氧体中,这是一种由氧化铁与其他金属氧化物混合而成的陶瓷化合物。这些材料在各种技术应用中发挥着重要作用,包括磁记录介质、变压器和微波设备。 铁磁性背后的基本机制可以通过邻近离子之间的交换相互作用来理解。在铁磁材料中,通常有两种不同类型的离子,它们的磁矩相反。例如,在磁铁矿(Fe3O4)的情况下,铁离子存在于两种不同的氧化态:Fe2+和Fe3+。Fe2+离子的磁矩大于Fe3+离子,导致它们反向排列时的不平衡。这种不平衡导致净磁矩的产生,这是铁磁性的标志。 铁磁性的一个迷人之处在于其温度依赖性。随着铁磁材料温度的升高,热振动会破坏磁矩的有序排列,这可能导致在特定温度(称为居里温度)下转变为顺磁态。在此温度以下,材料保持其磁性,而在此温度以上,热能克服了磁相互作用,导致磁化的丧失。 铁磁性的应用广泛而多样。在电子学中,由于其高磁导率和低电导率,铁磁材料用于电感器和变压器。此外,它们还用于微波技术,其中铁氧体作为隔离器和环流器,能够实现高效信号传输并防止干扰。此外,数据存储领域也极大地受益于铁磁性,因为这些材料是磁硬盘和磁带中的重要组成部分,允许可靠地存储和检索信息。 总之,铁磁性是一种迷人的现象,它弥合了铁磁性和反铁磁性之间的差距。其独特的属性和应用使其成为材料科学和工程学的重要研究领域。随着研究人员继续探索铁磁性的复杂性,我们可以期待在利用这些卓越材料的磁性特性方面取得进一步的技术进步。理解铁磁性不仅丰富了我们对磁性现象的知识,也为可能改变各个行业的创新应用铺平了道路。
文章标题:ferrimagnetism的意思是什么
文章链接:https://www.liuxue886.cn/danci/360814.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论