flavin
简明释义
n. [生化]黄素
n. (Flavin)人名;(法)弗拉万;(英)弗莱文
英英释义
单词用法
黄素辅因子 | |
单核苷酸黄素 | |
腺苷二磷酸黄素 | |
依赖于黄素的酶 | |
含黄素的蛋白质 | |
黄素生物合成 |
同义词
核黄素 | 核黄素对身体能量的产生至关重要。 | ||
维生素B2 | 维生素B2缺乏会导致各种健康问题。 |
反义词
非黄素 | The non-flavin compounds do not exhibit the same properties as flavins. | 非黄素化合物不具有与黄素相同的特性。 | |
黑暗 | 在黑暗中,依赖于黄素的反应被抑制。 |
例句
1.Renalase is a novel flavin adenine dinucleotide-dependent amine oxidase secreted by the kidney, which degrades circulating catecholamines and modulates cardiac function and systemic blood pressure.
肾酶是一种主要由肾脏分泌的新型黄素腺嘌呤二核苷酸依赖的胺氧化酶,能降解循环中的儿茶酚胺,调节心功能和血压。
2.Renalase is a novel flavin adenine dinucleotide-dependent amine oxidase secreted by the kidney, which degrades circulating catecholamines and modulates cardiac function and systemic blood pressure.
肾酶是一种主要由肾脏分泌的新型黄素腺嘌呤二核苷酸依赖的胺氧化酶,能降解循环中的儿茶酚胺,调节心功能和血压。
3.Dihydrolipoamide dehydrogenase (DLDH), a flavin-dependent oxidoreductase, is an ubiquitous enzyme which presents in variety of organisms and plays an important role in energy metabolism.
二氢硫辛酰胺脱氢酶是一种广泛存在于各种生物并在能量代谢中起重要作用的黄素氧化还原酶。
4.FMN (flavin mononucleotide) A derivative of riboflavin that is a coenzyme in electron-transfer reactions.
黄素单核苷酸(FMN):核黄素的衍生物,在电子传递反应中是一种辅酶,作为多种脱氢酶的。
5.The proportions of flavin, non-heme iron and labile sulphide in the eluate was found to be 1: (8~10) :10.
经分析,其异咯嗪、非血红素铁以及不稳定硫之比为1:(8~10):10。
6.The enzyme requires a cofactor known as flavin (黄素) to function properly.
该酶需要一种称为flavin(黄素)的辅助因子才能正常工作。
7.In the presence of light, flavin (黄素) can undergo photochemical reactions.
在光的存在下,flavin(黄素)可以发生光化学反应。
8.Certain vitamins, such as riboflavin, are forms of flavin (黄素).
某些维生素,如核黄素,是flavin(黄素)的形式。
9.The research focused on the role of flavin (黄素) in cellular respiration.
该研究集中于flavin(黄素)在细胞呼吸中的作用。
10.Scientists discovered that flavin (黄素) derivatives have potential applications in medicine.
科学家发现flavin(黄素)衍生物在医学上有潜在应用。
作文
In the realm of biochemistry, the term flavin refers to a group of organic compounds derived from riboflavin (vitamin B2), which play crucial roles in various biological processes. These compounds are essential for life, as they are involved in numerous enzymatic reactions, particularly those related to energy production and metabolism. The most notable members of the flavin family include flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Both FMN and FAD serve as cofactors for a wide range of enzymes, facilitating redox reactions that are vital for cellular function. One of the key functions of flavin compounds is their role in the electron transport chain, a critical component of cellular respiration. In this process, electrons are transferred through a series of proteins embedded in the mitochondrial membrane, ultimately leading to the production of adenosine triphosphate (ATP), the energy currency of the cell. The presence of flavin coenzymes is essential for the proper functioning of several dehydrogenases, which are enzymes that catalyze the removal of hydrogen from substrates. This removal is crucial for the conversion of nutrients into usable energy, highlighting the importance of flavin in metabolic pathways. Moreover, flavin compounds are also known for their role in photoreception. Certain flavins can absorb light and undergo structural changes, which can trigger biological responses. For instance, in some microorganisms, flavin plays a pivotal role in light-driven processes, such as photosynthesis and phototropism. This ability to absorb light makes flavin an interesting subject of study in both plant biology and microbiology, as researchers explore its potential applications in biotechnology and renewable energy. The significance of flavin extends beyond basic biological functions; it also has implications in human health. Deficiencies in riboflavin can lead to various health issues, including skin disorders, anemia, and impaired energy metabolism. Understanding the role of flavin in human physiology helps in the development of dietary guidelines and nutritional interventions to prevent these deficiencies. Furthermore, research into flavin has opened avenues for therapeutic applications, including the use of flavin-based compounds in treating certain diseases and conditions. In conclusion, flavin compounds are indispensable in the field of biochemistry due to their multifaceted roles in energy metabolism, enzymatic reactions, and even light absorption. Their importance in both microbial and human systems underscores the need for ongoing research into their functions and potential applications. As we continue to explore the biochemical pathways involving flavin, we gain valuable insights that can lead to advancements in health, nutrition, and biotechnology, ultimately enhancing our understanding of life at the molecular level.
在生物化学领域,术语flavin指的是一组源自核黄素(维生素B2)的有机化合物,这些化合物在各种生物过程中发挥着至关重要的作用。这些化合物对生命至关重要,因为它们参与许多酶促反应,特别是与能量产生和代谢相关的反应。flavin家族中最著名的成员包括黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)。FMN和FAD都作为广泛酶的辅因子,促进氧化还原反应,这对细胞功能至关重要。 flavin化合物的一个关键功能是它们在电子传递链中的作用,这是细胞呼吸的关键组成部分。在这个过程中,电子通过嵌入线粒体膜的一系列蛋白质转移,最终导致三磷酸腺苷(ATP)的生产,ATP是细胞的能量货币。flavin辅酶的存在对于几种脱氢酶的正常功能至关重要,这些酶催化底物中氢的去除。这种去除对于将营养物质转化为可用能量至关重要,突显了flavin在代谢途径中的重要性。 此外,flavin化合物还以其在光感应中的作用而闻名。某些黄素可以吸收光并经历结构变化,这可以触发生物反应。例如,在某些微生物中,flavin在光驱动过程(如光合作用和向光性)中发挥着关键作用。这种吸收光的能力使得flavin成为植物生物学和微生物学研究的一个有趣课题,研究人员探索其在生物技术和可再生能源中的潜在应用。 flavin的重要性不仅限于基本生物功能;它在人体健康方面也有影响。核黄素缺乏会导致各种健康问题,包括皮肤病、贫血和能量代谢受损。了解flavin在人体生理中的作用有助于制定饮食指南和营养干预措施,以预防这些缺乏症。此外,对flavin的研究为治疗某些疾病和状况的治疗应用开辟了新的途径,包括使用基于黄素的化合物。 总之,由于flavin化合物在能量代谢、酶促反应甚至光吸收中的多方面作用,它们在生物化学领域是不可或缺的。它们在微生物和人类系统中的重要性强调了对其功能和潜在应用的持续研究的必要性。随着我们继续探索涉及flavin的生化途径,我们获得了宝贵的见解,这可能导致健康、营养和生物技术的进步,最终增强我们对分子水平生命的理解。
文章标题:flavin的意思是什么
文章链接:https://www.liuxue886.cn/danci/363346.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论