fluidic
简明释义
adj. 流体的,射流的
英英释义
Relating to or denoting a system that uses fluids to perform work or control processes. | 与使用流体来执行工作或控制过程的系统相关或表示。 |
Characterized by the ability to flow or change shape easily. | 以能够流动或轻易改变形状为特征。 |
单词用法
流体电路 | |
流体驱动器 | |
流体传感器 | |
流体逻辑 | |
流体推进 | |
流体混合 | |
流体操控 | |
流体动力学 |
同义词
液体 | The liquid state of matter is defined by its ability to flow. | 物质的液态是由其流动能力定义的。 | |
流动的 | The flowing river provided a serene backdrop for the picnic. | 流动的河流为野餐提供了宁静的背景。 | |
流体 | 流体动力学是流体力学的一个子学科。 |
反义词
固体 | 这张桌子是用实木做的。 | ||
刚性 | 这个刚性结构可以承受强风。 |
例句
1.Modulat design was adopted to allow the detection system to be applied for micro-fluidic and conventional analyses by changing suitable detection cells.
整机采用模块化结构利用分立的检测池模块可满足微流量分析及常规分析的需要。
2.As detective area of suspension array, how to design a micro-fluidic system and control the flow velocity are discussed in detail.
微流场是液相芯片的检测场所,研究了微流场系统的设计和流速控制方法。
3.But it is still required to compute the practical courses and time of fluidic element's failure.
但是这离计算实际的射流元件的失效过程及时间还有进一步分析的必要。
4.The invention also provides a micro-fluidic protein chip which USES the quantum dot-biological composite probe as a signal probe (detection probe).
本发明还提供采用上述量子点-生物复合探针作为信号探针(检测探针)的微流控蛋白质芯片。
5.The muscles are a product of Festo and are already widely used in industrial practice under the name of Fluidic Muscle.
机器肌肉是Festo公司的一个产品,已经广泛应用于工业应用,叫做流体肌肉。
6.The utility model discloses a vacuum fluidic device, particularly a vacuum fluidic device having the advantages of reasonable structure and obvious effect.
本实用新型公开了一种真空射流装置,特别是指一种结构合理, 效果显著的真空射流装置。
7.This paper analyses oscillation mechanism of the oscillator in terms of pipeline impedance and fluidic noise.
以共鸣器为振荡源,从管路阻抗的角度和射流噪声的角度对其振荡机理进行了分析。
8.The simulation obtains while process of fluidic attachment and switch and distribution of velocity and pressure of flow field.
同时计算得到了静止式气波制冷机内部流场的速度、压力分布,捕捉到了射流“卷吸”和充排气的掺混现象。
9.The engineers designed a new type of fluidic 流体的 actuator that responds quickly to changes in pressure.
工程师们设计了一种新型的流体的执行器,能够快速响应压力变化。
10.In the field of robotics, fluidic 流体的 systems can provide more flexible movements compared to traditional mechanical systems.
在机器人领域,流体的系统相比传统机械系统可以提供更灵活的运动。
11.The fluidic 流体的 circuit used in this device allows for precise control of liquid flow.
该设备中使用的流体的电路允许对液体流动进行精确控制。
12.Researchers are exploring fluidic 流体的 technologies for applications in microfluidics and biomedical devices.
研究人员正在探索流体的技术在微流体和生物医学设备中的应用。
13.The fluidic 流体的 logic gates can perform computations using only fluid pressure.
该流体的逻辑门可以仅通过液体压力进行计算。
作文
In our rapidly evolving world, the concept of technology is constantly being redefined. One of the most fascinating areas of innovation is found in the realm of fluidic (流体的) systems. These systems utilize the principles of fluid dynamics to create devices that can manipulate fluids in various ways, leading to advancements in multiple fields, from engineering to medicine. In this essay, I will explore the significance of fluidic (流体的) technology, its applications, and the potential it holds for the future. The term fluidic (流体的) refers to the behavior and control of fluids, particularly in systems designed to exploit their unique properties. Unlike traditional mechanical systems that rely on solid components, fluidic (流体的) systems often use channels, valves, and pumps to manage the flow of liquids or gases. This approach allows for greater flexibility and efficiency in various applications. One of the most prominent applications of fluidic (流体的) technology is in the field of microfluidics. Microfluidic devices manipulate tiny volumes of fluids, typically at the microliter or nanoliter scale. These devices are revolutionizing areas such as medical diagnostics, where they enable rapid and accurate testing with minimal sample sizes. For instance, a microfluidic device can analyze blood samples to detect diseases at an early stage, providing crucial information for timely treatment. The ability to perform complex analyses on small samples makes fluidic (流体的) technology a game-changer in healthcare. Moreover, fluidic (流体的) systems are also making strides in environmental science. Researchers are developing fluidic (流体的) devices to monitor water quality by detecting contaminants in real-time. These devices can provide immediate feedback, allowing for quicker responses to environmental hazards. The integration of fluidic (流体的) technology into environmental monitoring systems signifies a proactive approach to safeguarding our ecosystems. In addition to healthcare and environmental applications, fluidic (流体的) technology is finding its way into consumer products. For example, some modern kitchen appliances utilize fluidic (流体的) principles to optimize mixing and cooking processes. By controlling the flow of ingredients, these appliances can improve efficiency and enhance the overall cooking experience. The versatility of fluidic (流体的) systems opens up new possibilities for innovation in everyday life. The future of fluidic (流体的) technology looks promising. As research continues to advance, we can expect to see even more sophisticated applications emerging. For instance, the integration of artificial intelligence with fluidic (流体的) systems could lead to smarter devices capable of adapting to changing conditions in real-time. This fusion of technologies has the potential to create highly efficient and responsive systems that can revolutionize industries. In conclusion, the exploration of fluidic (流体的) technology offers exciting opportunities across various fields. Its applications in healthcare, environmental science, and consumer products demonstrate its transformative potential. As we continue to innovate and push the boundaries of what is possible, fluidic (流体的) systems will undoubtedly play a crucial role in shaping our future. Embracing this technology will not only enhance our understanding of fluid dynamics but also pave the way for groundbreaking advancements that can benefit society as a whole.
在我们迅速发展的世界中,技术的概念不断被重新定义。其中最令人着迷的创新领域之一就是流体的系统。这些系统利用流体动力学的原理来创建能够以各种方式操纵流体的设备,从而推动多个领域的发展,从工程到医学。在这篇文章中,我将探讨流体的技术的重要性、其应用及其未来潜力。 术语流体的指的是流体的行为和控制,特别是在旨在利用其独特属性的系统中。与依赖固体组件的传统机械系统不同,流体的系统通常使用通道、阀门和泵来管理液体或气体的流动。这种方法允许在各种应用中实现更大的灵活性和效率。 流体的技术最显著的应用之一是在微流体学领域。微流体设备操纵微升或纳升级别的小体积流体。这些设备正在革新医疗诊断领域,使快速准确的测试成为可能,同时减少样本量。例如,微流体设备可以分析血液样本,以早期阶段检测疾病,为及时治疗提供关键信息。在小样本上进行复杂分析的能力使流体的技术成为医疗保健领域的游戏规则改变者。 此外,流体的系统也在环境科学中取得了进展。研究人员正在开发流体的设备,以实时监测水质,检测污染物。这些设备可以提供即时反馈,从而更快地应对环境危害。将流体的技术整合到环境监测系统中,标志着一种主动保护生态系统的方式。 除了医疗和环境应用外,流体的技术也逐渐进入消费产品。例如,一些现代厨房电器利用流体的原理来优化混合和烹饪过程。通过控制成分的流动,这些电器可以提高效率,增强整体烹饪体验。流体的系统的多功能性为日常生活中的创新开辟了新的可能性。 流体的技术的未来看起来前景光明。随着研究的不断推进,我们可以期待看到更多复杂的应用出现。例如,将人工智能与流体的系统集成可能会导致更智能的设备,能够实时适应变化的条件。这种技术的融合有潜力创造出高度高效和响应迅速的系统,从而彻底改变各个行业。 总之,探索流体的技术为各个领域提供了令人兴奋的机会。其在医疗保健、环境科学和消费产品中的应用证明了其变革潜力。随着我们继续创新并推动可能性的边界,流体的系统无疑将在塑造我们的未来中发挥关键作用。拥抱这一技术不仅将增强我们对流体动力学的理解,还将为突破性的进展铺平道路,这些进展可以惠及整个社会。
文章标题:fluidic的意思是什么
文章链接:https://www.liuxue886.cn/danci/364357.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论