fractal
简明释义
n. 分形
adj. 分形的
复 数 f r a c t a l s
英英释义
A fractal is a complex geometric shape that can be split into parts, each of which is a reduced-scale copy of the whole, often exhibiting self-similarity. | 分形是一种复杂的几何形状,可以被分割成部分,每个部分都是整体的缩小版,通常表现出自相似性。 |
单词用法
分形维数;碎形維度 | |
[数]分形几何;碎形几何;不规则碎片几何体 |
同义词
自相似的 | 自然界中的分形图案通常是自相似的。 | ||
递归的 | 分形几何基于递归过程。 | ||
复杂的 | 分形可以用于建模复杂系统。 |
反义词
规则的 | 这个图案是规则且可预测的。 | ||
均匀的 | The uniform distribution of colors creates a harmonious effect. | 颜色的均匀分布产生了和谐的效果。 |
例句
1.It sports a waveform oscilloscope, fractal terrain, and an amorphous blob that pulsates to the music.
它支持一个波形示波器,分形图案,和一个随音乐跳动的不定形亮点。
2.You, as an individual, wish to effect change (the initial fractal shape).
你,作为一个个体,希望实现一个改变(最初的分形形状)。
3."It's a fractal deployment of intellectual property, " Wright says. "Instead of picking one format, you're designing for one mega- platform.
“这是知识产权的分块部署,”莱特称,“我们不只采取一种形式,而是设计一个巨大的平台。
4.In this chapter we provided some useful analogies for understanding the fractal nature of SOA.
在这一章里,我们提供了一些理解SOA不确定实质的有用参考。
5.Fractal art is a mankind art miracle which created by the scientist cooperating with artist.
分形艺术是科学家与艺术家合作创造出的人类艺术奇迹。
6.Application of Fractal Geometry in Pedology and its Prosptects.
分形几何在土壤学中的应用及其展望。
7.An important optical method of generating fractal pattern is described.
叙述了获得分形图像的一种光学方法。
8."It's a fractal deployment of intellectual property, " Wright says. "Instead of picking one format, you're designing for one mega- platform.
“这是知识产权的分块部署,”莱特称,“我们不只采取一种形式,而是设计一个巨大的平台。
9.The fractal characteristic of the bulldozer performance distribution is studied with the fractal theory.
应用分形几何理论,研究了推土机性能分布的分形特征。
10.The artist used fractal 分形 patterns to create a mesmerizing piece of digital art.
这位艺术家使用了分形图案创作了一幅令人着迷的数字艺术作品。
11.In mathematics, fractal 分形 geometry helps us understand complex shapes and patterns.
在数学中,分形几何帮助我们理解复杂的形状和模式。
12.The coastline is often described as fractal 分形 because its detail changes with the scale of measurement.
海岸线常被描述为分形的,因为其细节随着测量尺度的变化而变化。
13.Many natural phenomena, such as clouds and mountains, exhibit fractal 分形 characteristics.
许多自然现象,如云和山,表现出分形特征。
14.Computer simulations often utilize fractal 分形 algorithms to create realistic landscapes.
计算机模拟通常利用分形算法创建逼真的景观。
作文
The concept of fractal (分形) geometry has captivated mathematicians, artists, and scientists alike for decades. Fractals are intricate structures that exhibit self-similarity at various scales. This means that a small portion of the fractal can resemble the whole, creating a fascinating interplay between simplicity and complexity. The beauty of fractal (分形) patterns is not just in their visual appeal but also in their mathematical underpinnings. One of the most famous examples of a fractal (分形) is the Mandelbrot set, discovered by mathematician Benoit Mandelbrot in the late 20th century. The Mandelbrot set is defined by a simple mathematical formula, yet it produces an infinitely complex boundary that reveals new patterns as one zooms in. This property of infinite detail is a hallmark of fractal (分形) geometry, where no matter how much you magnify the image, there is always something new to discover. Fractals can be found in nature as well. From the branching of trees to the formation of snowflakes, the natural world is filled with fractal (分形) patterns. For instance, the way rivers meander through landscapes creates a fractal (分形) pattern that can be observed from a distance. Similarly, coastlines exhibit fractal (分形) characteristics, where the intricacies of the shoreline can reveal more detail as one examines it closely. This connection between mathematics and nature highlights the importance of fractal (分形) geometry in understanding the world around us. In art, the influence of fractal (分形) patterns is evident in various forms of creative expression. Artists have long been inspired by the beauty of fractal (分形) shapes, using them to create stunning visual compositions. The repetition of fractal (分形) forms can evoke feelings of harmony and balance, making them a popular choice in modern design and architecture. Additionally, digital artists often utilize algorithms based on fractal (分形) mathematics to generate unique and mesmerizing visuals that captivate audiences. The study of fractal (分形) geometry has also found practical applications in various fields, including computer graphics, biology, and even finance. In computer graphics, fractal (分形) algorithms are used to create realistic landscapes and textures, enhancing the visual quality of video games and animations. In biology, researchers have discovered that certain biological structures, such as blood vessels and lung tissues, exhibit fractal (分形) characteristics, which can provide insights into their function and health. In the realm of finance, fractal (分形) analysis has emerged as a tool for understanding market behaviors. Traders use fractal (分形) patterns to identify potential trends and reversals in stock prices, leveraging the self-similar nature of these patterns to make informed decisions. In conclusion, the concept of fractal (分形) geometry transcends the boundaries of mathematics, influencing art, nature, and science. Its ability to reveal complex structures through simple rules makes it a powerful tool for understanding both the universe and human creativity. As we continue to explore the depths of fractal (分形) patterns, we unlock new perspectives on the world around us, showcasing the interconnectedness of all things through the lens of mathematics.
分形几何的概念几十年来吸引着数学家、艺术家和科学家的目光。分形是复杂的结构,在不同的尺度上表现出自相似性。这意味着分形的一小部分可以类似于整体,从而在简单性和复杂性之间创造出迷人的互动。分形图案的美不仅在于其视觉吸引力,还在于其数学基础。 最著名的分形之一是曼德尔布罗特集,由数学家贝诺特·曼德尔布罗特在20世纪晚期发现。曼德尔布罗特集由一个简单的数学公式定义,然而它产生了一个无限复杂的边界,当我们放大时会揭示出新的图案。这种无限细节的特性是分形几何的标志,无论你放大图像多少,总有新的东西可以发现。 分形在自然界中也随处可见。从树木的分枝到雪花的形成,自然界充满了分形图案。例如,河流在景观中蜿蜒的方式创造了一种分形模式,可以从远处观察到。同样,海岸线也表现出分形特征,海岸线的复杂性在仔细检查时可以揭示更多细节。这种数学与自然之间的联系突显了分形几何在理解我们周围世界中的重要性。 在艺术中,分形图案的影响在各种创作表达形式中显而易见。艺术家们长期以来受到分形形状之美的启发,利用它们创造惊艳的视觉作品。分形形式的重复可以唤起和谐和平衡的感觉,使它们成为现代设计和建筑中的热门选择。此外,数字艺术家通常利用基于分形数学的算法生成独特而迷人的视觉效果,吸引观众的注意。 分形几何的研究在计算机图形学、生物学甚至金融等多个领域也找到了实际应用。在计算机图形学中,分形算法被用于创建逼真的风景和纹理,提高视频游戏和动画的视觉质量。在生物学中,研究人员发现某些生物结构,如血管和肺组织,表现出分形特征,这可以提供对其功能和健康的深入了解。 在金融领域,分形分析已成为理解市场行为的工具。交易者利用分形模式识别股票价格中的潜在趋势和反转,利用这些模式的自相似性质做出明智的决策。 总之,分形几何的概念超越了数学的界限,影响了艺术、自然和科学。它通过简单的规则揭示复杂结构的能力使其成为理解宇宙和人类创造力的强大工具。随着我们继续探索分形模式的深度,我们解锁了对周围世界的新视角,通过数学的视角展示了万物的相互联系。
文章标题:fractal的意思是什么
文章链接:https://www.liuxue886.cn/danci/366890.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论