generatrices
简明释义
英[ˌdʒɛnəˈreɪtɪs]美[ˌdʒɛnəˈreɪtɪs]
n. 母线;母面;母点(generatrix 的变形)
英英释义
A generatrix is a line or curve that, when moved in a particular way, generates a surface or solid figure. | 生成线是指在特定方式下移动时生成表面或固体图形的线或曲线。 |
单词用法
同义词
生成器 | 发电厂的生成器持续运行。 | ||
生产者 | 这部电影的制作人获得了多个奖项。 | ||
创造者 | The creators of the app have a strong vision for its future. | 这个应用程序的创造者对它的未来有着清晰的愿景。 |
反义词
终结者 | The terminators of the project were necessary to finalize the results. | 项目的终结者是完成结果所必需的。 | |
毁灭者 | The destroyers of the ecosystem can lead to irreversible damage. | 生态系统的毁灭者可能导致不可逆转的损害。 |
例句
1.The subpixel line equations of two generatrices in two planes projected by the rotary object is obtained by the subpixel straight line edge detection method based on spatial moment.
采用基于空间矩的回转体像面目标直线边缘亚像素提取技术,获得回转体目标在每个像面上的两条母线的亚像素直线方程。
2.The subpixel line equations of two generatrices in two planes projected by the rotary object is obtained by the subpixel straight line edge detection method based on spatial moment.
采用基于空间矩的回转体像面目标直线边缘亚像素提取技术,获得回转体目标在每个像面上的两条母线的亚像素直线方程。
3.The concept of generatrices is essential in understanding how surfaces are formed in geometry.
理解几何中表面形成的概念至关重要,特别是generatrices(生成线)。
4.In architecture, the generatrices of a curve can determine the aesthetic of a building.
在建筑学中,曲线的generatrices(生成线)可以决定建筑的美感。
5.Mathematicians often use generatrices to describe the properties of various geometric shapes.
数学家经常使用generatrices(生成线)来描述各种几何形状的属性。
6.The generatrices of a cylinder are straight lines that extend along its height.
圆柱的generatrices(生成线)是沿其高度延伸的直线。
7.To create a conical shape, one can visualize the generatrices radiating from a point.
要创建一个锥形,可以想象从一个点辐射出的generatrices(生成线)。
作文
In the world of mathematics and geometry, the term generatrices (生成线) plays a significant role in understanding how certain shapes and forms are created. The concept of generatrices refers to the lines or curves that generate a three-dimensional shape when they are moved along a specified path or axis. This idea is fundamental in various fields, including engineering, architecture, and computer graphics, where the creation of complex structures often relies on the manipulation of basic geometric elements. To illustrate the importance of generatrices, let us consider the example of a cylinder. A cylinder can be visualized as being formed by rotating a rectangle around one of its sides. In this case, the edges of the rectangle act as generatrices (生成线), producing the circular bases of the cylinder as they sweep through space. This simple yet powerful concept allows architects and engineers to design intricate structures with precision and efficiency. Moreover, the application of generatrices extends beyond traditional geometry. In computer-aided design (CAD) software, for instance, designers often utilize generatrices (生成线) to create complex surfaces and shapes. By defining a set of generatrices, designers can manipulate them to form various geometrical configurations, allowing for endless creative possibilities. This capability is crucial in industries such as automotive design, where aerodynamics and aesthetics must be carefully balanced. The significance of generatrices also emerges in the field of animation and visual effects. When creating realistic 3D models, artists often rely on the concept of generatrices (生成线) to define the contours and outlines of characters or objects. By adjusting the generatrices, artists can achieve lifelike movements and expressions, enhancing the overall quality of their work. Furthermore, the understanding of generatrices is essential for students studying mathematics and physics. Learning about these generating lines helps students grasp more complex concepts related to surfaces, volumes, and spatial relationships. It fosters critical thinking and problem-solving skills, which are invaluable in both academic and real-world situations. In conclusion, the term generatrices (生成线) encapsulates a fundamental principle in geometry that has far-reaching implications across various disciplines. Whether in the design of everyday objects, the creation of stunning visual effects, or the education of future generations, the concept of generatrices remains a vital tool for innovation and creativity. As we continue to explore the possibilities of mathematics and design, understanding generatrices will undoubtedly enhance our ability to shape the world around us.
在数学和几何的世界中,术语generatrices(生成线)在理解某些形状和形式是如何创建时发挥着重要作用。generatrices指的是当它们沿着指定的路径或轴移动时生成三维形状的线或曲线。这个概念在工程、建筑和计算机图形学等多个领域中是基础,因为复杂结构的创建往往依赖于基本几何元素的操控。 为了说明generatrices的重要性,让我们考虑一个圆柱体的例子。圆柱体可以被想象为一个矩形围绕其一侧旋转而形成的。在这种情况下,矩形的边缘作为generatrices(生成线),在空间中扫动时产生圆柱体的圆形底面。这个简单而强大的概念使建筑师和工程师能够精确高效地设计复杂结构。 此外,generatrices的应用超越了传统几何。在计算机辅助设计(CAD)软件中,设计师经常利用generatrices(生成线)来创建复杂的表面和形状。通过定义一组generatrices,设计师可以操纵它们形成各种几何配置,从而实现无尽的创造可能性。这种能力在汽车设计等行业中至关重要,因为在这些领域中,空气动力学和美学必须小心平衡。 generatrices的重要性也在动画和视觉效果领域中显现出来。当创建逼真的3D模型时,艺术家通常依赖于generatrices(生成线)的概念来定义角色或物体的轮廓和外形。通过调整generatrices,艺术家可以实现栩栩如生的动作和表情,从而提升作品的整体质量。 此外,理解generatrices对于学习数学和物理的学生至关重要。学习这些生成线有助于学生掌握与表面、体积和空间关系相关的更复杂概念。它培养了批判性思维和解决问题的能力,这在学术和现实世界中都是无价的。 总之,术语generatrices(生成线)概括了几何学中的一个基本原理,该原理在各个学科中具有深远的影响。无论是在日常物品的设计、令人惊叹的视觉效果的创作,还是在未来一代的教育中,generatrices的概念仍然是创新和创造力的重要工具。随着我们继续探索数学和设计的可能性,理解generatrices无疑将增强我们塑造周围世界的能力。
文章标题:generatrices的意思是什么
文章链接:https://www.liuxue886.cn/danci/371232.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论